The University of Calgary Department of Mathematics and Statistics MATH 353 Handout \#6 Answers

1. This is a straightforward application of Green's theorem. Applying it gives

$$
\int_{0}^{1} \int_{3 x}^{3}\left(4 y^{3}-2 x^{2} y^{2}\right) d y d x
$$

and there is no problem integrating this to obtain $318 / 5$.
2. This is not a closed curve, and a direct attempt at the line integral will lead to very difficult (impossible) integration. To apply Green's theorem, let's complete the given curve, which we will call \mathcal{C}_{1}, to a simple closed curve by adding the line segment \mathcal{C}_{2} from $(0,0)$ to $(\pi, 0)$. We then get a simple closed curve $\mathcal{C}=\mathcal{C}_{1} \cup\left(-\mathcal{C}_{2}\right)$. Then

$$
\int_{\mathcal{C}}=\int_{\mathcal{C}_{1}}-\int_{\mathcal{C}_{2}} .
$$

Using Green's theorem (noting \mathcal{C} has clockwise orientation),

$$
\int_{\mathcal{C}}=-\int_{0}^{\pi} \int_{0}^{\sin x}\left(2 x-3 y^{2}\right) d y d x=\int_{0}^{\pi}\left((\sin x)^{3}-2 x \sin x\right) d x,
$$

which gives $4 / 3-2 \pi$ after a bit of work.
For \mathcal{C}_{2} use the parametrization $\mathbf{r}=\langle t, 0\rangle$ and one gets

$$
\int_{0}^{\pi} \sqrt{t} d t=(2 / 3)(\pi)^{3 / 2}
$$

The final answer is then $4 / 3-2 \pi+(2 / 3)(\pi)^{3 / 2}$.
3. Directly using the divergence theorem gives

$$
\iiint_{\mathcal{R}}\left(12 x^{2} z+12 y^{2} z+12 z^{3}\right) d V,
$$

and changing to spherical coordinates gives

$$
12 \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R}\left(\rho^{2} z\right) \rho^{2} \sin \phi d \rho d \phi d \theta=0 .
$$

4. $\nabla \bullet \mathbf{F}=0+0=0$, so the answer is 0 .
5. In this case Stokes's theorem is used in "reverse." In this case our surface \mathcal{S} is the paraboloid and its boundary $\mathcal{C}=\partial \mathcal{S}$ is the circle of radius 2 in the plane $z=5$, centred at the origin. Parametrize \mathcal{C} by $\mathbf{r}=\langle 2 \cos t, 2 \sin t, 5\rangle$. One finds

$$
\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=\int_{0}^{2 \pi} 20\left(-\sin ^{2} t+\cos ^{2} t\right) d t=20 \int_{0}^{2 \pi} \cos (2 t) d t=0 .
$$

6. Parametrize by $\mathbf{r}(x, y)=\langle x, y, 1-x-y / 2\rangle$. Applying Stokes's theorem then leads fairly directly to

$$
\int_{0}^{1} \int_{0}^{2 x-2} e^{x} d y d x=2 e-4
$$

