MATH 353-Winter 2010 Handout \#6

1. Use Green's theorem to evaluate $\int_{\mathcal{C}} x^{2} y^{2} d x+4 x y^{3} d y$ where \mathcal{C} is the triangle with vertices $(0,0),(1,3)$ and $(0,3)$, oriented positively.
2. Use Green's thereom to evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ where

$$
\mathbf{F}(x, y)=\left\langle\sqrt{x}+y^{3}, x^{2}+\sqrt{y}\right\rangle
$$

and \mathcal{C} consists of the arc of the curve $y=\sin x$ from $(0,0)$ to $(\pi, 0)$.
3. Use the divergence theorem to calculate the flux of

$$
\mathbf{F}(x, y, z)=\left\langle 4 x^{3} z, 4 y^{3} z, 3 z^{4}\right\rangle
$$

out of the sphere \mathcal{S} with radius R centred at the origin.
4. Use the (two-dimensional) divergence theorem to evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet \hat{N} d s$ where $\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$ and \mathcal{C} is given as $x^{2}+y^{2}=1$, oriented counterclockwise.
5. Use Stokes's theorem to evaluate $\iint_{\mathcal{S}} \nabla \times \mathbf{F} \bullet d \mathbf{S}$ where $\mathbf{F}(x, y, z)=$ $\langle y z, x z, x y\rangle$ and \mathcal{S} is the part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the plane $z=5$, oriented upward.
6. Use Stokes's theorem to evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ where $\mathbf{F}=\left\langle e^{-x}, e^{x}, e^{z}\right\rangle$ and \mathcal{C} is the boundary of the part of the plane $2 x+y+2 z=2$ in the first octant, oriented by the direction from $(1,0,0)$ to $(0,2,0)$.

