MATHEMATICS 353

Winter 2010
 REVIEW FOR FINAL EXAM

1. A few Basics - to be done at the review session only.
2. Max and min for $f(x, y)=2 x^{2}-3 y^{2}-2 x$ on the closed unit disc \mathcal{D}.
3. Let \mathcal{D} be the entire second quadrant. Determine

$$
\iint_{\mathcal{D}} x e^{x-y} d A
$$

4. Evaluate the integral

$$
\iint_{\mathcal{D}} e^{3\left(x^{2}+y^{2}\right)} d x d y \text {, where } \mathcal{D}=\left\{(x, y): 0 \leq y, 1 \leq x^{2}+y^{2} \leq 4\right\}
$$

5. Express the following iterated integral in the order $d x d z d y$:

$$
\int_{0}^{1} d x \int_{0}^{1-x} d y \int_{y}^{1} f(x, y, z) d z
$$

6. If ϕ is a scalar field and \mathbf{F} is a vector field, prove that

$$
\nabla \times(\phi \mathbf{F})=(\nabla \phi) \times \mathbf{F}+\phi(\nabla \times \mathbf{F})
$$

7. Evaluate $\int_{\mathcal{C}} f d s$, where $f(x, y, z)=y+z^{2}-1$ and \mathcal{C} is the portion of the curve $\mathbf{r}(t)=\left\langle(4 / 3) t^{3 / 2}, t^{2}+1, t\right\rangle$ from $A=(0,1,0)$ to $B=$ $(4 / 3,2,1)$.
8. Given $\mathbf{F}(x, y, z)=\langle\alpha x+y z, x z, x y\rangle$, find α so that \mathbf{F} is conservative, and then find a potential function ϕ.
9. Find the surface area of \mathcal{S}, the part of the cylinder $x^{2}+y^{2}=4$ that is in the first octant and below the plane $x+y+2 z=6$.
10. Evaluate $\int_{\mathcal{C}} 3 x^{2} y^{2} d x+4 x^{3} y d y$, where \mathcal{C} is the boundary of the square with vertices $(0,0),(1,0),(1,1),(0,1)$, oriented positively.
11. Find the flux of the vector field $\mathbf{F}(x, y, z)=y \mathbf{i}-x \mathbf{j}+4 \mathbf{k}$ upward through the surface \mathcal{S}, where \mathcal{S} is the part of the surface $z=1-x^{2}-y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=1$.
12. Evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$, where $\mathbf{F}=\left\langle y e^{x}, x^{2}+e^{x}, z^{2} e^{z}\right\rangle$ and \mathcal{C} is the curve $\mathbf{r}(t)=\langle 1+\cos t, 1+\sin t, 1-\cos t-\sin t\rangle, 0 \leq t \leq 2 \pi$. [Hint: Use Stokes's theorem.]
