MATH 381 W 2010 ASSIGNMENT 1

1. Sketch the parabola $y^{2}=4 x, y \geq 0$, or equivalently $y=2 \sqrt{x}$. Let $F=(1,0)$, show that F is the focal point. To do this first show that $y^{\prime}=2 / y$. Next, let $P=\left(b^{2} / 4, b\right)$ be any fixed point on the parabola. Let $\mathbf{v}=\langle 1,0\rangle$ be the unit vector at P that is horizontal and directed to the right. Show that the vector $\mathbf{w}=\langle 1,2 / b\rangle$ is tangent to the parabola at P and also pointing towards the right. Let θ be the angle between these two vectors, use the scalar product to show $\cos \theta=b / \sqrt{b^{2}+4}$. Similarly show that if ϕ is the angle between the two vectors $-\mathbf{w}$ and $\mathbf{x}=P F$, then $\cos \phi=b / \sqrt{b^{2}+4}$. Conclude that $\phi=\theta$ and thus that F is the focal point of the parabola.
2. Adams 10.2 : $1(\mathrm{~g}), 3,4,7,14,23,27$. Also in 14 find the angle between two diagonals of the cube.
3. Adams 10.3: 22,23,25 (the Jacobi identity)
4. Adams 10.4 : 5, 7, 15, 17
5. Adams 10.5: 1 - 11 (odds), 21
6. Adams 10.6 : $3,5,6,7,8$
7. Marsden - Tromba p. $86: 2,4,7,10,11,12$ (photocopies of these available for those who do not have this text)
