1. In the following questions ϕ, ψ are scalar fields and \mathbf{F}, \mathbf{G} are vector fields in \mathbb{R}^{3}. All functions are assumed to be smooth. For each question, write either "vector field," "scalar field," or "meaningless" in the space provided.
(a) $\nabla \bullet(\nabla \phi)$
(b) $(\nabla \bullet \mathbf{F}) \times(\nabla \bullet \mathbf{G})$
(c) $(\nabla \times \mathbf{F}) \times \mathbf{G}$
(d) $\nabla \bullet(\nabla \times \phi)$
(e) $(\nabla \bullet \mathbf{F}) \mathbf{G}$

2. For each of the following answer "True" or "False". Do not write "T" or "F".
(a) $\left\{(x, y, z): x+y+z<10\right.$ and $\left.x^{2}+y^{2}+z^{2} \leq 3\right\}$ is closed.
(b) The matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 5 & \sqrt{2} \\
0 & \sqrt{2} & 6
\end{array}\right]
$$

is positive definite.
(c) At any point of a smooth surface \mathcal{S} in \mathbb{R}^{3} there is a unique unit normal vector \mathbf{N}.
(d) If \mathbf{F} is a conservative vector field, defined over a simply connected domain \mathcal{D}, then $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=0$ for any oriented path \mathcal{C} in the domain \mathcal{D}.
(e) The following equality is correct.

$$
\begin{gathered}
\int_{0}^{\pi} \int_{0}^{\pi / 4} \int_{2}^{3} e^{\theta+\phi} \ln (\rho) \cdot \rho^{2} \sin \phi d \rho d \phi d \theta \\
=\left(\int_{0}^{\pi} e^{\theta} d \theta\right) \cdot\left(\int_{0}^{\pi / 4} e^{\phi} \sin \phi d \phi\right) \cdot\left(\int_{2}^{3} \ln (\rho) \cdot \rho^{2} d \rho\right)
\end{gathered}
$$

For Questions 3-10 circle the correct answer. Your must show your work.
3. The set of values for c such that the matrix

$$
\left[\begin{array}{ccc}
1 & 3 & 0 \\
3 & 10 & c \\
0 & c & 4
\end{array}\right]
$$

is positive definite is given by
(a) $-\sqrt{40} \leq c \leq \sqrt{40}$
(b) $-2 \leq c \leq 2$
(c) $-\sqrt{40}<c<\sqrt{40}$
(d) $-2<c<2$
(e) $0 \leq c \leq 40$.
4. Let \mathcal{D} be the triangular domain given by $0 \leq y \leq 3, \quad(y / 3)-1 \leq x \leq$ $1-(y / 3)$. Then

$$
\iint_{\mathcal{D}}\left(e-x^{5} e^{\sqrt{1+y^{2}}}\right) d A=
$$

(a) $3 e$
(b) 0
(c) $6 e$
(d) $e-e^{\sqrt{244}}$
(e) Undefined.
5. Let \mathcal{R} be the solid ball given by $x^{2}+(y-2)^{2}+(z+4)^{2} \leq 1$, let $\mathcal{S}=\partial \mathcal{R}$, oriented by the outward normal, and let $\mathbf{F}(x, y, z)=$ $\langle 2 x, y+\cos (z), 3 z\rangle$, then the flux $\iint_{\mathcal{S}} \mathbf{F} \bullet d \mathbf{S}$ equals
(a) 2π
(b) 4π
(c) 6π
(d) 8π
(e) 0 .
6. Let \mathcal{R} be the region given by $1 \leq x^{2}+y^{2}+z^{2} \leq 4$ and $z \geq 0$, then $\iiint_{\mathcal{R}} 3 \cos \left(\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}\right) d V$ equals
(a) $2 \pi[\sin (8)-1]$
(b) $\pi[\sin (8)-1]$
(c) $2 \pi[\sin (8)-\sin (1)]$
(d) $\pi[\sin (8)-\sin (1)]$
(e) 0
7. Let \mathcal{D} be the entire first quadrant $x, y \geq 0$ in the $x-y$ plane. The value of $\iint_{\mathcal{D}} x e^{-x^{2}-y} d A$ equals
(a) -2
(b) $1 / 2$
(c) 2
(d) $-1 / 2$
(e) Undefined.
8. Given that the vector field $\mathbf{F}(x, y, z)=\left\langle 2 x \cos (y),-x^{2} \sin (y)+\right.$ $\left.e^{z}, y e^{z}\right\rangle$ is conservative, find the line integral $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$, from the point $A=(0,0,0)$ to the point $B=(1, \pi, \ln (2))$ along the path $\mathbf{r}(t)=\left\langle t^{5 / 3}, 4 \arctan (t), \ln \sqrt{3 t^{2}+1}\right\rangle$. (Hint : Find a potential function ϕ for \mathbf{F})
(a) $-1+2 \pi$
(b) $1+\pi+\ln (2)$
(c) $1+\pi$
(d) 0
(e) $4 \arctan (\pi)$.
9. Consider the function $f(x, y)=\frac{1}{x^{2}+y^{2}}$ defined on the domain $\mathcal{D}=$ $\left\{(x, y): x^{2}-2 x+y^{2} \leq 0\right\}$ (Hint: It is a closed disk of radius 1). Which of the following statements is true?
(a) f has maximum 1 and no minimum
(b) f has maximum 2 and no minimum
(c) f has no maximum and minimum 1
(d) f has maximum 4 and minimum $1 / 4$
(e) f has no maximum and minimum $1 / 4$
10. Let \mathcal{C} be the closed curve in \mathbb{R}^{2} joining, by straight line segments, the points $(-1,1),(3,0),(1,4),(-2,2)$ and back to $(-1,1)$ (in the given order). If $\mathbf{F}(x, y)=\left\langle e^{x} y^{2} / 2+\arctan (x), e^{x} y+2 y\right\rangle$, then $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ equals
(a) 4
(b) 3
(c) e^{4}
(d) e^{3}
(e) 0
11. Determine the volume of the region bounded above by the paraboloid $z=10-x^{2}-y^{2}$ and below by the cone $z^{2}=9\left(x^{2}+y^{2}\right)$, with $z \geq 0$.
12. Find and classify the critical point(s) of the function

$$
f(x, y)=\frac{x^{3}}{2}+\frac{y^{3}}{2}-3 x y+2 .
$$

13. A box without top is made of material for the bottom costing $\$ 5 / m^{2}$, the front and back $\$ 1 / m^{2}$, and the sides $\$ 2 / m^{2}$. The total cost is fixed at $\$ 3,000$. Find the dimensions that will maximize the volume.
14. Set up, but do not evaluate, a double integral (including the limits of integration) computing the surface area of \mathcal{S} which is the part of the cylinder $x^{2}+4 y^{2}=4$ in the first octant below the plane $x+y+2 z=3$.
15. Evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ where $\mathbf{F}=\left\langle y e^{x}, x+e^{x}, z^{2} e^{z}\right\rangle$ and \mathcal{C} is the curve which is the intersection of the plane $z=3-x-y$ and the cylinder $x^{2}+y^{2}=1$, oriented from the point $(1,0,2)$ on the curve to the point $(0,1,2)$ on the curve. [Hint: Use Stokes's Theorem]
