
PMAT 329 Introduction to Cryptography

SOLUTIONS TO ASSIGNMENT 2

(1) [12 points] Cryptanalyze the following polyalphabetic ciphertext. Show your work. Note
that this ciphertext is the example used in the handout given out in class to illustrate the
factoring method for resolving the number of alphabets.

SIJYU MNVCA ISPJL RBZEY QWYEU LWMGW ICJCI MTZEI MIBKN

QWBRI VWYIG BWNBQ QCGQH IWJKA GEGXN IDMRU VEZYG QIGVN

CTGYO BPDBL VCGXG BKZZG IVXCU NTZAO BWFEQ QLFCO MTYZT

CCBYQ OPDKA GDGIG VPWMR QIIEW ICGXG BLGQQ VBGRS MYJJY

QVFWY RWNFL GXNFW MCJKX IDDRU OPJQQ ZRHCN VWDYQ RDGDG

BXDBN PXFPU YXNFG MPJEL SANCD SEZZG IBEYU KDHCA MBJJF

KILCJ MFDZT CTJRD MIYZQ ACJRR SBGZN QYAHQ VEDCQ LXNCL

LVVCS QWBII IVJRN WNBRI VPJEL TAGDN IRGQP ATYEW CBYZT

EVGQU VPYHL LRZNQ XINBA IKWJQ RDZYF KWFZL GWFJQ QWJYQ

IBWRX

Solution. This ciphertext is the example used in class to illustrate the factoring method for
resolving the number of alphabets (5 alphabets were used). Attempting to apply Kerkhoff’s
shortcut fails, so we conclude that a mixed polyalphabetic cipher (mixed Vigenére) was used.
Using frequency data and symmetry of position, one can find the five cipher alphabets:

Plain A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

C 1 A U S T I N G B C D F J K L M O P Q R V W Y Z E X H

C 2 P Q R V W Y Z E X H A U S T I N G B C D F J K L M O

C 3 R V W Y Z E X H A U S T I N G B C D F J K L M O P Q

C 4 I N G B C D F J K L M O P Q R V W Y Z E X H A U S T

C 5 L M O P Q R V W Y Z E X H A U S T I N G B C D F J K

Note that the alphabet was reordered using the (rather appropriate!) key word EXHAUST-
ING, and that the key indicating which shift of the reordered alphabet to use for which
subtext can be found by reading the cipher characters corresponding to plaintext A (key-
word=APRIL).

The plaintext is the following:

CO Troop B:
Enemy has retired to NEWCHESTER. One troop is reported at HENDERSON
MEETING HOUSE; two other troops in orchard at southwest edge of NEWCH-
ESTER. Second Sq is preparing to attack from the south. One troop of third
Sq is engaging hostile troop at NEWCHESTER. Rest of third Qs is moving to
attack NEWCHESTER from the north. Move your Sq into woods east of crossr.
five-three-nine and be prepared to support attack of second and third Sq. Do not
advance beyond NEWCHESTER. Messages here.
Treer, col.

The complete solution to this cipher can be found in “Elements of Cryptanalysis” by William
Friedman.
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(2) Consider a cryptosystem with key space K, plaintext space M, and ciphertext space C that
provides perfect secrecy. Assume that p(C) > 0 for all C ∈ C.
(a) [5 points] Prove that |K| ≥ |C|.

Solution. Since our system provides perfect secrecy, we have for all M ∈ M with
p(M) > 0 and all C ∈ C:

0 < p(C) = p(C|M) =
∑
K∈K

EK(M)=C

p(K),

so for every M ∈ M with p(M) > 0 and every C ∈ C, at least one of the terms p(K)
in the above sum is positive. This means that for every M ∈ M with p(M) > 0 and
every C ∈ C, there exists at least one key K ∈ K such that EK(M) = C.
Fix M ∈M with p(M) > 0 (such a message always exists, obviously) and consider the
map fM : K → C via fM (K) = EK(M). By our above reasoning, for every ciphertext
C ∈ C, there exists a key K ∈ K with C = EK(M) = f(K). This says exactly that
the map f is surjective (onto). Since both K and C are finite sets, this implies that
|K| ≥ |C|.

(b) [5 points] Conclude that if |K| ≤ |M|, then |K| = |M| = |C| and all encryptions are
bijections.

Solution. Since every encryption function EK : M → C is an injection (proved in
class), we have |M| ≤ |C|. By (a), we have |C| ≤ |K|. By assumption, we have
|K| ≤ |M|. Altogether, we must have |M| = |K| = |C|. Since all encryptions are
injections and |M| = |C| is finite, all encryptions are bijections.

(c) [6 points] Show that under the condition of part (b) every ciphertext is equally prob-
able, i.e. p(C) = 1/|C| for all C ∈ C.
(Hint: Let C ∈ C be any ciphertext. Use the statement on the uniqueness of keys in
Shannon’s Theorem to show that the function gC : K →M via gC(K) = DK(C) is a
bijection. Now use the other statement in Shannon’s Theorem, i.e. that every key is
used with equal likelihood.)

Solution. By the second statement of Shannon’s Theorem, for every plaintext M ∈M
and every ciphertext C ∈ C, there exists a unique key K ∈ K with C = EK(M), or
equivalently (since EK is a bijection by part (b)), M = DK(C).
As suggested in the hint, let C ∈ C be any ciphertext, and consider the map gC : K →
M via gC(K) = DK(C). Now by our previous statement, DK(C) exists for every key
K, so gC is defined on all of K. Furthermore, for every M ∈M, there exists a unique
key K ∈ K with M = DK(C) = gC(K), so gC is a bijection. By the first statement of
Shannon’s Theorem, every key is used with equal probability 1/|K|. Therefore,

p(C) =
∑
K∈K

p(K)p(DK(C)) =
1
|K|

∑
K∈K

p(DK(C))

=
1
|K|

∑
K∈K

p(gC(K)) =
1
|K|

· 1 =
1
|K|

=
1
|C|

.

Here, we use the facts that |K| = |C| and that as K runs through K, the values of
gC(K) run through all of M (since gC is a bijection), so the sum over the probabilities
of all these values is one.
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Solution 2. : Here is another way to prove this without the hint. As in the previous
solution, you argue that for any messae M ∈M and any ciphertext C ∈ C, there exists
a unique key K = KMC ∈ K with C = EKMC

(C). Then for any M ∈M and C ∈ C:

p(C) = p(C|M) =
∑
K∈K

EK(M)=C

p(K) = p(KMC) =
1
|K|

=
1
|C|

since the sum has only one term p(KMC) and |K| = |C|.

(3) [8 points] Use the characterization p(C) = p(C|M) for all C ∈ C and M ∈M to prove that
one-time pad provides perfect secrecy under the assumption that each key is chosen with
equal likelihood. Can you say anything about the distribution of ciphertexts?

Solution. We have M = C = K = Zn
2 (n ∈ N), and for every M,K, C ∈ Zn

2 , encryption
of M under key K is given by EK(M) = M ⊕ K, and decryption of C under K is given
by DK(C) = C ⊕ K. We assume that each key K ∈ Zn

2 is chosen with equal likelihood
p(K) = 1/|Zn

2 | = 2−n. Let C ∈ Zn
2 . Then

p(C) =
∑

K∈Zn
2

p(K)p(DK(C)) = 2−n
∑

K∈Zn
2

p(C ⊕K).

But the map f : Zn
2 → Zn

2 via f(K) = C ⊕K is a bijection whose inverse map is f , since
f(f(K)) = f(C⊕K) = C⊕C⊕K = K. Hence, the sum in the formula above runs through
all the elements in Zn

2 and can be written as
∑

K′∈Zn
2

p(K ′) which is equal to 1. This shows
that p(C) = 2−n for all C ∈ Zn

2 ; in particular, all ciphertexts occur with equal probability,
regardless of the probability distribution on the plaintext space.

On the other hand, it is easy to see that for every message M ∈ Zn
2 and every ciphertext

C ∈ Zn
2 , there exists a unique key K such that C = EK(M), and that key is K = M ⊕ C.

To see this, not that K = K ⊕ 0 = K ⊕M ⊕M = C ⊕M . Also, suppose we have two keys
K1,K2 ∈ Zn

2 such that C = M ⊕K1 = M ⊕K2, then x-or’ing this identity with M yields
M ⊕ C = K1 = K2. Therefore, for all C,M ∈ Zn

2 with p(M) > 0, we have

p(C|M) =
∑

K∈Zn
2

EK(M)=C

p(K) = p(M ⊕ C) = 2−n = p(C),

and the one-time pad provides perfect secrecy under the outlined conditions.

(4) For a bit string x ∈ Zn
2 , denote by x the ones’ complement of x; that is, the i-th bit of x is

a ‘1’ if and only if the i-th bit of x is a ‘0’ for 1 ≤ i ≤ n. Note that x = 1⊕x where 1 ∈ Zn
2

is the string consisting of n ones.

(a) [4 points] Let M be a DES plaintext and K a DES key. Suppose C = EK(M) where
EM denote DES encryption under key K. Show that C = EK(M).
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Solution. Let Li and Ri, i = 0, 1, . . . , 16, be the 32-bit blocks occurring during the
computation of EK(M) and let L

′
i and R

′
i, i = 0, 1, . . . , 16, be the 32-bit blocks occur-

ring during the computation of EK(M). Similarly, let Ki, i = 1, . . . , 16, be the subkeys
used during the computation of EK(M) and let K ′

i be the subkeys used during the
computation of EK(M).
First, consider the DES key schedule. The subkeys are produced by combinations of
permutations, expansions, and shifts. All of these operations only rearrange the bits
of the input — none of them actually complement or otherwise modify a single input
bit. The same sequence of bits are taken for the subkeys irregardless of the input,
so the sequences of bits occurring in the key schedules for K and K will simply be
complements of each other. This implies that K ′

i = Ki.
Second, note that L′0 = L0 and R′

0 = R0, since the initial permutation only rearranges
the bits of the input, i.e., IP (M) = IP (M). When the first round is executed, we get
L′1 = R′

0, and since L1 = R0 we obtain

R′
0 = R0 = L1 =⇒ L′1 = L1 .

What about R′
1? We have that R′

1 = L′0⊕f(R′
0,K

′
i) = L0⊕f(R0,K0). Consider the

function f. The first step is to compute E(R0)⊕K0, where E is an expansion function.
E only rearranges and duplicates bits, so E(R0) = E(R0). Now, for two bits a and b,
it can be seen by simply constructing truth tables that a⊕ b = a⊕ b, and hence for bit
strings A and B, bit-wise XOR yields A⊕B = A⊕B. Hence,

E(R0)⊕K1 = E(R0)⊕K1 = E(R0)⊕K1,

and this implies that

f(R′
0,K

′
1) = f(R0,K1) = f(R0,K1) .

By constructing truth tables we can also show that A⊕B = A⊕B = A⊕B, yielding

R′
1 = L′0 ⊕ f(R′

0,K
′
1) = L0 ⊕ f(R0,K1) = L0 ⊕ f(R0,K1) = R1 .

We can carry out the same argument for each of the 16 round to show that executing
each round on L′i = Li and R′

i = Ri yields L′i+1 = Li+1 and R′
i+1 = Ri+1, and

in particular we get that L′16 = L16 and R′
16 = R16. IP−1 rearranges bits without

modifying any of them, so IP−1(R16, L16) = IP−1(R16, L16) = C. Thus, we have
EK(M) = C as required.

(b) [4 points] Suppose a cryptanalyst knows two plaintext-ciphertext pairs (M1, C1) and
(M2, C2) with Ci = EK(Mi) (i = 1, 2) for some DES key K (i.e. the same key is used
for both encryptions) and M2 = M1 (this scenario amounts to a CTA). How and by
how much can this information reduce the effort of an exhaustive key search attack on
DES? Explain.

Solution. This complementation property can be used to reduce the search effort for
K by half as follows. Suppose that the adversary knows C1, C2,M1 = M, and M2 = M
such that C1 = EK(M) and C2 = EK(M). Further, suppose that during the course of
an exhaustive search attack we are testing the key L :

• If L is the correct key, then

C1 = EL(M) and C2 = EL(M) .
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• If L is the one’s complement of the correct key, then

C1 = EL(M) and C2 = EL(M) .

Thus, to test the key L simply compute CL = EL(M) and

• compare CL to C1 : if they are equal, then L is the correct key;
• compare CL to C2 : if they are equal, then L is the one’s complement of the

correct key.

This allows us to simultaneously test keys L and L (by computing only one DES
encryption), thereby cutting the total number of keys to check in half.

(5) In a cryptographic system, one wishes to avoid keys that provide a poor level of encryption;
the worst scenario would obviously be EK(M) = M for all plaintexts M , but other keys
have less drastic weaknesses.

Two DES keys K1 and K2 are dual or semi-weak if EK1(M) = DK2(M) for every M ∈ Z64
2 .

Such keys are obviously a disaster for double encryption as EK2(EK1(M)) = M for all
plaintexts M . If in addition, K1 = K2 (= K say), i.e. DK = EK , then K is called self-dual
or palindromic1 or simply weak.

(a) [4 points] Let C0 be the left half and D0 be the right half of the image of the relevant
56 bits of a DES key K under DES Permuted Choice PC-1. If C0 is either all 0’s or
all 1’s and D0 is either all 0’s or all 1’s, then K is self-dual. Prove this in the case
C0 = D0 = 056 (the other three cases can be proved analogously).

Solution. Each round key is produced from a combination of Ci and Di, where Ci

and Di are obtained by a circular shift of the bits of Ci−1 and Di−1, respectively. If
all the bits of C0 are identical, then any circular shift produces the same result and
C0 = C1 = · · · = C16. Similarly, if all the bits of D0 are identical, then D0 = D1 =
· · · = D16. Thus, if for a key K we obtain C0 with all bits the same and D0 with all
bits the same, the subkeys produced will all be identical. Since decryption is simply
the DES algorithm with the reverse key schedule, encryption and decryption will be
the same when all the subkeys identical, and any key producing identical subkeys is a
weak key.

(b) [4 points] The following four DES keys (given in hexadecimal, i.e. base 16, notation)
are self-dual. Prove this fact for the first of these four keys (again, the proof for the
other three is analogous).

0101 0101 0101 0101
FEFE FEFE FEFE FEFE
1F1F 1F1F 0E0E 0E0E
E0E0 E0E0 F1F1 F1F1

It turns out that these are the only weak keys. It is a fact that each such key K has
232 fixed points, i.e. plaintexts M for which EK(M) = M .

1A palindrome is a sequence of symbols that reads the same forwards as backwards, for example “never odd or
even” or “able was I ere I saw elba”
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Solution. Note that the first key consists of the byte 00000001 repeated 8 times. The
DES specification (FIPS publication) states that bits 8, 16, . . . , 64 of the key are used
as parity bits (recall that only 56 bits of the key are actually used as key material).
When “PERMUTED CHOICE 1” is applied to the key to produce C0 and D0, these
bits are ignored. Thus, since all the remaining bits of the first key are 0, C0 and D0

will both consist solely of 0’s, and by Part (a) this key is weak.
For completion, we discuss the other three weeak keys. The second key consists of
11111110 repeated 8 times, and using the above reasoning C0 and D0 will consist
solely of 1’s, implying that the second key is also weak.
There are two more possible weak keys, the first corresponding to C0 all 0’s and D0

all 1’s, and the second corresponding to C0 all 1’s and D0 all 0’s. Setting all the bits
of C0 to 0 and all the bits of D0 to 1 yields the third key 1F1F . . . 1F (using the table
for “PERMUTED CHOICE 1” from the FIPS document). Similarly, the fourth key
yields C0 all 1’s and D0 all 0’s.

(c) [4 points] Let C0 and D0 be as in part (a). Prove that C0 = 0101 . . . 01 (in binary),
then Ci ⊕ C17−i = 1111 . . . 11 for 1 ≤ i ≤ 16. State an analogous property for the
Di’s.

Solution. Looking at the table of left shifts in the key schedule, we see that C1 =
(10)14, C2 = C3 = · · · = C8 = (01)14, C9 = C10 = · · · = C15 = (10)14, and C16 =
(01)14. In other words, Ci = C17−i, and hence Ci ⊕ C17−i = 128 for 1 ≤ i ≤ 16.
Simply replace Ci by Di for 1 ≤ i ≤ 16 to obtain the same property and proof for the
Di.

(d) [4 points] The following pairs of keys (given in hexadecimal notation) are dual:
01FE 01FE 01FE 01FE FE01 FE01 FE01 FE01
1FE0 1FE0 0EF1 0EF1 E01F E01F F10E F10E
01E0 01E0 01F1 01F1 E001 E001 F101 F101
1FFE 1FFE 0EFE 0EFE FE1F FE1F FE0E FE0E
011F 011F 010E 010E 1F01 1F01 0E01 0E01
E0FE E0FE F1FE F1FE FEE0 FEE0 FEF1 FEF1

Prove this for the first of these six pairs of keys (again, one can give analogous proofs
for the other five). These are the only semi-weak keys.

Solution. It is not hard to show that key (01FE)4 corresponds to C0 = D0 = (01)14

and key (FE01)4 corresponds to C0 = D0 = (10)14. In other words, if K1,K2, . . . ,K16

are the 16 round keys obtained from key (01FE)4, then the 16 round keys obtained
from key (FE01)4 are K16,K15, . . . ,K1. Since decryption under any key K reverses
the key schedule obtained when encrypting with K, encryption under key (01FE)4

and decryption under (FE01)4 have the same key schedule and thus produce the same
ciphertext.

In practice, it is obviously easy to avoid the 16 keys listed above.


