
PMAT 329 ASSIGNMENT 3 Solution

1. Consider the RSA encryption scheme with public keys n = 55 and e = 7.

(a) [4 points] Encipher the plaintext M = 19. Use the binary exponentiation algorithm and
show your work.
Solution:
To encipher M we compute

C ≡ M e ≡ 197 (mod 55).

To use binary exponentiation, we need the binary expansion of e = 7. Since 7 = 1×22 +
1× 21 + 1× 20 we get b0 = 1, b1 = 1, and b2 = 1. Then

r0 ≡ 19b0 ≡ 19 (mod 55),
r1 ≡ (r0)219b1 ≡ (361)(19) ≡ (31)(19) ≡ 589 ≡ 39 (mod 55),
r2 ≡ (r1)219b2 ≡ (1521)(19) ≡ (36)(19) ≡ 684 ≡ 24 (mod 55).

Thus, 197 ≡ r2 ≡ 24 (mod 55), and C = 24.

(b) [4 points] Break the cipher by finding p, q, and d.

Solution:
To find p and q we factor n = 55 = 5 × 11, yielding p = 5, q = 11. Thus φ(n) =
(p−1)(q−1) = 40, and we compute d by solving the linear congruence ed ≡ 1 (mod φ(n))
or

7d ≡ 1 (mod 40).

We use the Extended Euclidean Algorithm to solve the associated linear Diophantine
equation

7d + 40k = 1

for d. We first compute the sequence of q’s using the Euclidean algorithm:

7 = 0(40) + 7, q0 = 0,

40 = 5(7) + 5, q1 = 5,

7 = 1(5) + 2, q2 = 1,

5 = 2(2) + 1, q3 = 2,

2 = 2(1) + 0, q4 = 2.

Thus n = 4, and we compute d = (−1)n−1Bn−1 where Bn−1 is computed using the
recurrence defined by B−2 = 1, B−1 = 0 and

Bk = qkBk−1 + Bk−2, k = 0, . . . , n.

We obtain
i −2 −1 0 1 2 3
qi − − 0 5 1 2
Bi 1 0 1 5 6 17
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yielding d ≡ (−1)317 ≡ −17 ≡ 23 (mod 40). To check, observe that 7(23) = 161 ≡
1 (mod 40).

(c) [4 points] Decipher the ciphertext C = 35. Use the binary exponentiation algorithm and
show your work.
Solution:
To decrypt C we compute

M ≡ Cd ≡ 3523 (mod 55).

To use binary exponentiation, we need the binary expansion of d = 23. Since 23 =
1×24 +0×23 +1×22 +1×21 +1×20 we get b0 = 1, b1 = 0, b2 = 1, b3 = 1, and b4 = 1.
Then

r0 ≡ 35b0 ≡ 35 (mod 55),
r1 ≡ (r0)235b1 ≡ (1225) ≡ 15 (mod 55),
r2 ≡ (r1)235b2 ≡ (225)(35) ≡ (5)(35) ≡ 175 ≡ 10 (mod 55),
r3 ≡ (r2)235b3 ≡ (100)(35) ≡ (45)(35) ≡ 1575 ≡ 35 (mod 55),
r4 ≡ (r3)235b4 ≡ (1225)(35) ≡ (15)(35) ≡ 525 ≡ 30 (mod 55).

Thus 3523 ≡ r4 ≡ 30 (mod 55), and M = 30.

2. [6 points] It is obvious that if one can factor an RSA modulus n = pq, i.e. one knows the
prime factors p, q of n, then one can compute φ(n) = (p− 1)(q − 1). Prove the converse, i.e.
if both n and φ(n) are known, then p and q can be found without factoring n.

Solution:

We have
φ(n) = (p− 1)(q − 1) = pq − p− q + 1 = n− p− n

p
+ 1,

so pφ(n) = pn− p2 − n + p, or equivalently,

p2 + (φ(n)− n− 1)p + n = 0.

The equation x2 + (φ(n) − n − 1)x + n = 0 is a quadratic equation with known coefficients,
and we can solve it using the well-known formula

x = −φ(n)− n− 1
2

±

√(
φ(n)− n− 1

2

)2

− n.

The equation will have two solutions: p (for the “+” sign) and q (for the “−” sign).
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3. This problem describes a “difference of squares” attack on RSA. Suppose two RSA primes p
and q (q > p) are very close to one another, i.e. q = p + δ where δ ∈ N is small (i.e. small
enough that it is feasible to try all possible values 1, 2, 3, . . . for δ; for example, we could have
δ ≈ log p). Note that in this case, p + q is only slightly larger than

√
n.

(a) [5 points] Using the identity (
q + p

2

)2

= n +
(

q − p

2

)2

,

describe an algorithm to recover p + q.
Solution:
We have (q+p)2 = 4n+δ2. Note that since p and q are both odd, their difference δ must
be even. So all we need to do is check whether for i = 2, 4, 6, . . ., the quantity 4n + i2

is a square; that is, take
√

4n + i2 and check whether it is an integer. This requires at
most δ/2 trials. Every value of i such that 4n + i2 is a square gives us a candidate for
p + q (in fact, there will be a unique such value of i by unique factorization and part
(b)).

(b) [3 points] Using the technique of part (a), describe a way to recover p and q efficiently
without factoring n.
Solution:
We know n and (from part (a)) p + q. Now φ(n) = (p− 1)(q − 1) = n− (p + q) + 1, so
we can find φ(n). By Problem 1, we can now easily derive p and q.

(c) [2 points] Explain why n = 23614161161 is a particularly bad choice as an RSA modulus
(apart from the fact that it’s too small to guarantee a decent level of security).
Solution:
The prime factorization of 23614161161 is n = pq with p = 153649 and q = 153689. We
have p− q = 40, so we can factor n after at most 20 trials, using the technique in (a).

Note that this problem raises an important practical point: when choosing RSA primes, make
sure that they are not too close together!

4. After the discovery of RSA, several writers suggested using it with a small encryption exponent
e (for example, e = 2, 3). Show why using such a small exponent is insecure in the following
scenarios:

(a) [8 points] Two people send the same message M to two different receivers. A different
modulus is used for each transmission, but e = 2 for both.
Solution:
Suppose Alice is sending M to Bob using Bob’s public key (nB, eB = 2) and also to
Carol using Carol’s public key (nC , eC = 2). Thus, Alice sends CB ≡ M2 (mod nB) to
Bob and CC ≡ M2 (mod nC) to Carol.
An adversary with CB and CC who knows that these two ciphertexts are encryptions
of the same message can compute M as follows. First he computes gcd(nB, nC). If by
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some miracle this give an answer other than 1, then both moduli can be factored and
both secret keys found. Otherwise, he can use the Chinese Remainder Theorem to solve

X ≡
{

CB (mod nB)
CC (mod nC)

for X (mod nBnC), 0 < X < nBnC . Then X ≡ M2 (mod nB) and X ≡ M2 (mod nC),
so (since nB and nC are coprime) X ≡ M2 (mod nBnC). But since 0 < M < nB and
0 < M < nC , we have 0 < M2 < nBnC , so X = M2 and hence M =

√
X.

(b) [8 points] Two different messages which differ by only a few characters (the adversary
can deduce the position of these characters) are sent under the same key. Here, e = 2
and n is the same for both messages.
Solution:
Suppose messages M1 and M2 are sent using the same public key e = 2 and the same
modulus n, i.e. C1 ≡ M2

1 (mod n) and C2 ≡ M2 (mod n). Now M1 = M2 + r for some
nonzero r ∈ Z. Since by assumption, the adversary can deduce the positions of the
characters where M1 and M2 differ, there are only a small number of possible values
for r, and the adversary can explicitly determine all of them and try them all on the
procedure given below.
Do the following for each candidate r: if by some miracle gcd(n, r) > 1, then n can be
factored, so assume that n and r are coprime. Then

C1 ≡ M2
1 ≡ (M2 + r)2 ≡ M2

2 + 2M2r + r2 (mod n),

and since C2 ≡ M2
2 (mod n), we have C1 ≡ C2 + 2M2r + r2 (mod n). Thus,

2rM2 ≡ C1 − C2 − r2 (mod n).

Since n is odd and gcd(r, n) = 1, the adversary can easily compute s ∈ Z, 0 < s < n
such that 2rs ≡ 1 (mod n). Then M ≡ s(C1 − C2 − r2) (mod n), 0 < M < n, is found.

5. [10 points] Rabin’s public-key encryption scheme enciphers a message M as

C ≡ M(M + b) (mod n), (0 ≤ C < n)

where b and n are public and n = pq for secret primes p and q. Give a deciphering algorithm
for the case where p + 1 and q + 1 are divisible by 4.

Hint 1: Compute d such that 2d ≡ b (mod n). Then

C + d2 ≡ (M + d)2 (mod n).

Hint 2: If x2 ≡ a (mod p) and p is a prime such that p ≡ 1 (mod 4), then

x ≡ ±a(p+1)/4 (mod p)

are the two square roots of a (mod p) (you need not prove this).
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Solution:

Compute d such that 2d ≡ b (mod n). Then C + d2 ≡ (M + d)2 (mod n). Set a = C + d2. We
need to find x such that x2 ≡ a (mod n), i.e., we need to find a square root of a (mod n).

Compute rp ≡ a(p+1)/4 (mod p) and rq ≡ a(q+1)/4 (mod q). Then by the second hint r2
p ≡

(−rp)2 ≡ a (mod p) and r2
q ≡ (−rq)2 ≡ a (mod q), i.e., rp and −rp are square roots of

a (mod p) and rq and −rq are square roots of a (mod q).

Select one square root of a (mod p) (take rp) and one modulo q (take rq). We use the Chinese
Remainder Theorem to compute x such that x ≡ rp (mod p) and x ≡ rq (mod q). Note that
x2 ≡ a (mod n), since x2 ≡ a (mod p), x2 ≡ a (mod q) and n = pq. Since there are two
choices for the root modulo p and two for the root modulo q, we obtain four distinct square
roots of a modulo n by this method.

Let x1, x2, x3, x4 be the four square roots of a ≡ C + d2 (mod n). Then since xi ≡ M +
d (mod n) for i = 1, 2, 3, or 4, M is equivalent to one of x1 − d, x2 − d, x3 − d, x4 − d modulo
n. One of these four values is the correct message.

There is no way to algorithmically determine which of the four possible messages was sent.
If the message is English or some other language that has fixed redundancy characteristics,
the correct message can easily be determined by examining all four possibilities. Another
solution is to append a small bit of fixed text to a message before encrypting. The decryption
which contains the same fixed text at the end is taken as the correct message.

(Aside: Breaking Rabin’s scheme is provably equivalent to factoring, unlike RSA. This means
that if one has a fast algorithm for breaking Rabin’s scheme, then that algorithm can be used
to factor n quickly.)

6. [6 points] Let n = pq for distinct primes p and q. Given a, 0 < a < n, let x and y, 0 < x, y < n,
be square roots of a modulo n, so

x2 ≡ a (mod n) and y2 ≡ a (mod n).

Show that gcd(x + y, n) = p or q if y 6= x and y 6= n− x, i.e., finding such x and y allows one
to factor n.

Solution:

Since x2 ≡ a (mod n) and y2 ≡ a (mod n), we have x2 ≡ y2 (mod n). Hence n = pq divides
x2 − y2 = (x− y)(x + y).

Since x, y < n it follows that |x − y| < n, and since x 6= y implies x − y 6= 0, we see that
n cannot divide x − y. Since 0 < x, y < n, it follows that 0 < x + y < 2n. Also, y 6= n − x
implies x+y 6= n, and hence n cannot divide x+y. Thus, since n does not divide either x−y
or x + y, the fact that n divides (x + y)(x − y) implies that either p or q must divide x + y
yielding gcd(n, x + y) = p or q.
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