1. Consider the RSA encryption scheme with public keys $n=55$ and $e=7$.
(a) [4 points] Encipher the plaintext $M=19$. Use the binary exponentiation algorithm and show your work.

Solution:

To encipher M we compute

$$
C \equiv M^{e} \equiv 19^{7}(\bmod 55) .
$$

To use binary exponentiation, we need the binary expansion of $e=7$. Since $7=1 \times 2^{2}+$ $1 \times 2^{1}+1 \times 2^{0}$ we get $b_{0}=1, b_{1}=1$, and $b_{2}=1$. Then

$$
\begin{aligned}
& r_{0} \equiv 19^{b_{0}} \equiv 19(\bmod 55) \\
& r_{1} \equiv\left(r_{0}\right)^{2} 19^{b_{1}} \equiv(361)(19) \equiv(31)(19) \equiv 589 \equiv 39(\bmod 55) \\
& r_{2} \equiv\left(r_{1}\right)^{2} 19^{b_{2}} \equiv(1521)(19) \equiv(36)(19) \equiv 684 \equiv 24(\bmod 55) .
\end{aligned}
$$

Thus, $19^{7} \equiv r_{2} \equiv 24(\bmod 55)$, and $C=24$.
(b) [4 points] Break the cipher by finding p, q, and d.

Solution:

To find p and q we factor $n=55=5 \times 11$, yielding $p=5, q=11$. Thus $\phi(n)=$ $(p-1)(q-1)=40$, and we compute d by solving the linear congruence $e d \equiv 1(\bmod \phi(n))$ or

$$
7 d \equiv 1(\bmod 40) .
$$

We use the Extended Euclidean Algorithm to solve the associated linear Diophantine equation

$$
7 d+40 k=1
$$

for d. We first compute the sequence of q 's using the Euclidean algorithm:

$$
\begin{aligned}
7 & =0(40)+7, \quad q_{0}=0, \\
40 & =5(7)+5, \quad q_{1}=5 \\
7 & =1(5)+2, \quad q_{2}=1, \\
5 & =2(2)+1, \quad q_{3}=2, \\
2 & =2(1)+0, \quad q_{4}=2 .
\end{aligned}
$$

Thus $n=4$, and we compute $d=(-1)^{n-1} B_{n-1}$ where B_{n-1} is computed using the recurrence defined by $B_{-2}=1, B_{-1}=0$ and

$$
B_{k}=q_{k} B_{k-1}+B_{k-2}, \quad k=0, \ldots, n .
$$

We obtain

i	-2	-1	0	1	2	3
q_{i}	-	-	0	5	1	2
B_{i}	1	0	1	5	6	17

yielding $d \equiv(-1)^{3} 17 \equiv-17 \equiv 23(\bmod 40)$. To check, observe that $7(23)=161 \equiv$ $1(\bmod 40)$.
(c) [4 points] Decipher the ciphertext $C=35$. Use the binary exponentiation algorithm and show your work.

Solution:

To decrypt C we compute

$$
M \equiv C^{d} \equiv 35^{23}(\bmod 55)
$$

To use binary exponentiation, we need the binary expansion of $d=23$. Since $23=$ $1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$ we get $b_{0}=1, b_{1}=0, b_{2}=1, b_{3}=1$, and $b_{4}=1$. Then

$$
\begin{aligned}
r_{0} & \equiv 35^{b_{0}} \equiv 35(\bmod 55) \\
r_{1} & \equiv\left(r_{0}\right)^{2} 35^{b_{1}} \equiv(1225) \equiv 15(\bmod 55) \\
r_{2} & \equiv\left(r_{1}\right)^{2} 35^{b_{2}} \equiv(225)(35) \equiv(5)(35) \equiv 175 \equiv 10(\bmod 55) \\
r_{3} & \equiv\left(r_{2}\right)^{2} 35^{b_{3}} \equiv(100)(35) \equiv(45)(35) \equiv 1575 \equiv 35(\bmod 55) \\
r_{4} & \equiv\left(r_{3}\right)^{2} 35^{b_{4}} \equiv(1225)(35) \equiv(15)(35) \equiv 525 \equiv 30(\bmod 55)
\end{aligned}
$$

Thus $35^{23} \equiv r_{4} \equiv 30(\bmod 55)$, and $M=30$.
2. [6 points] It is obvious that if one can factor an RSA modulus $n=p q$, i.e. one knows the prime factors p, q of n, then one can compute $\phi(n)=(p-1)(q-1)$. Prove the converse, i.e. if both n and $\phi(n)$ are known, then p and q can be found without factoring n.

Solution:

We have

$$
\phi(n)=(p-1)(q-1)=p q-p-q+1=n-p-\frac{n}{p}+1
$$

so $p \phi(n)=p n-p^{2}-n+p$, or equivalently,

$$
p^{2}+(\phi(n)-n-1) p+n=0
$$

The equation $x^{2}+(\phi(n)-n-1) x+n=0$ is a quadratic equation with known coefficients, and we can solve it using the well-known formula

$$
x=-\frac{\phi(n)-n-1}{2} \pm \sqrt{\left(\frac{\phi(n)-n-1}{2}\right)^{2}-n} .
$$

The equation will have two solutions: p (for the " + " sign) and q (for the " - " sign).
3. This problem describes a "difference of squares" attack on RSA. Suppose two RSA primes p and $q(q>p)$ are very close to one another, i.e. $q=p+\delta$ where $\delta \in \mathbb{N}$ is small (i.e. small enough that it is feasible to try all possible values $1,2,3, \ldots$ for δ; for example, we could have $\delta \approx \log p)$. Note that in this case, $p+q$ is only slightly larger than \sqrt{n}.
(a) [5 points] Using the identity

$$
\left(\frac{q+p}{2}\right)^{2}=n+\left(\frac{q-p}{2}\right)^{2}
$$

describe an algorithm to recover $p+q$.

Solution:

We have $(q+p)^{2}=4 n+\delta^{2}$. Note that since p and q are both odd, their difference δ must be even. So all we need to do is check whether for $i=2,4,6, \ldots$, the quantity $4 n+i^{2}$ is a square; that is, take $\sqrt{4 n+i^{2}}$ and check whether it is an integer. This requires at most $\delta / 2$ trials. Every value of i such that $4 n+i^{2}$ is a square gives us a candidate for $p+q$ (in fact, there will be a unique such value of i by unique factorization and part (b)).
(b) [3 points] Using the technique of part (a), describe a way to recover p and q efficiently without factoring n.

Solution:

We know n and (from part (a)) $p+q$. Now $\phi(n)=(p-1)(q-1)=n-(p+q)+1$, so we can find $\phi(n)$. By Problem 1, we can now easily derive p and q.
(c) [2 points] Explain why $n=23614161161$ is a particularly bad choice as an RSA modulus (apart from the fact that it's too small to guarantee a decent level of security).

Solution:

The prime factorization of 23614161161 is $n=p q$ with $p=153649$ and $q=153689$. We have $p-q=40$, so we can factor n after at most 20 trials, using the technique in (a).

Note that this problem raises an important practical point: when choosing RSA primes, make sure that they are not too close together!
4. After the discovery of RSA, several writers suggested using it with a small encryption exponent e (for example, $e=2,3$). Show why using such a small exponent is insecure in the following scenarios:
(a) [8 points] Two people send the same message M to two different receivers. A different modulus is used for each transmission, but $e=2$ for both.

Solution:

Suppose Alice is sending M to Bob using Bob's public key ($n_{B}, e_{B}=2$) and also to Carol using Carol's public key $\left(n_{C}, e_{C}=2\right)$. Thus, Alice sends $C_{B} \equiv M^{2}\left(\bmod n_{B}\right)$ to Bob and $C_{C} \equiv M^{2}\left(\bmod n_{C}\right)$ to Carol.
An adversary with C_{B} and C_{C} who knows that these two ciphertexts are encryptions of the same message can compute M as follows. First he computes $\operatorname{gcd}\left(n_{B}, n_{C}\right)$. If by
some miracle this give an answer other than 1 , then both moduli can be factored and both secret keys found. Otherwise, he can use the Chinese Remainder Theorem to solve

$$
X \equiv\left\{\begin{array}{l}
C_{B}\left(\bmod n_{B}\right) \\
C_{C}\left(\bmod n_{C}\right)
\end{array}\right.
$$

for $X\left(\bmod n_{B} n_{C}\right), 0<X<n_{B} n_{C}$. Then $X \equiv M^{2}\left(\bmod n_{B}\right)$ and $X \equiv M^{2}\left(\bmod n_{C}\right)$, so (since n_{B} and n_{C} are coprime) $X \equiv M^{2}\left(\bmod n_{B} n_{C}\right)$. But since $0<M<n_{B}$ and $0<M<n_{C}$, we have $0<M^{2}<n_{B} n_{C}$, so $X=M^{2}$ and hence $M=\sqrt{X}$.
(b) [8 points] Two different messages which differ by only a few characters (the adversary can deduce the position of these characters) are sent under the same key. Here, $e=2$ and n is the same for both messages.

Solution:

Suppose messages M_{1} and M_{2} are sent using the same public key $e=2$ and the same modulus n, i.e. $C_{1} \equiv M_{1}^{2}(\bmod n)$ and $C_{2} \equiv M^{2}(\bmod n)$. Now $M_{1}=M_{2}+r$ for some nonzero $r \in \mathbb{Z}$. Since by assumption, the adversary can deduce the positions of the characters where M_{1} and M_{2} differ, there are only a small number of possible values for r, and the adversary can explicitly determine all of them and try them all on the procedure given below.
Do the following for each candidate r : if by some miracle $\operatorname{gcd}(n, r)>1$, then n can be factored, so assume that n and r are coprime. Then

$$
C_{1} \equiv M_{1}^{2} \equiv\left(M_{2}+r\right)^{2} \equiv M_{2}^{2}+2 M_{2} r+r^{2}(\bmod n),
$$

and since $C_{2} \equiv M_{2}^{2}(\bmod n)$, we have $C_{1} \equiv C_{2}+2 M_{2} r+r^{2}(\bmod n)$. Thus,

$$
2 r M_{2} \equiv C_{1}-C_{2}-r^{2}(\bmod n)
$$

Since n is odd and $\operatorname{gcd}(r, n)=1$, the adversary can easily compute $s \in \mathbb{Z}, 0<s<n$ such that $2 r s \equiv 1(\bmod n)$. Then $M \equiv s\left(C_{1}-C_{2}-r^{2}\right)(\bmod n), 0<M<n$, is found.
5. [10 points] Rabin's public-key encryption scheme enciphers a message M as

$$
C \equiv M(M+b)(\bmod n), \quad(0 \leq C<n)
$$

where b and n are public and $n=p q$ for secret primes p and q. Give a deciphering algorithm for the case where $p+1$ and $q+1$ are divisible by 4 .
Hint 1: Compute d such that $2 d \equiv b(\bmod n)$. Then

$$
C+d^{2} \equiv(M+d)^{2}(\bmod n)
$$

Hint 2: If $x^{2} \equiv a(\bmod p)$ and p is a prime such that $p \equiv 1(\bmod 4)$, then

$$
x \equiv \pm a^{(p+1) / 4}(\bmod p)
$$

are the two square roots of $a(\bmod p)$ (you need not prove this).

Solution:

Compute d such that $2 d \equiv b(\bmod n)$. Then $C+d^{2} \equiv(M+d)^{2}(\bmod n)$. Set $a=C+d^{2}$. We need to find x such that $x^{2} \equiv a(\bmod n)$, i.e., we need to find a square root of $a(\bmod n)$.
Compute $r_{p} \equiv a^{(p+1) / 4}(\bmod p)$ and $r_{q} \equiv a^{(q+1) / 4}(\bmod q)$. Then by the second hint $r_{p}^{2} \equiv$ $\left(-r_{p}\right)^{2} \equiv a(\bmod p)$ and $r_{q}^{2} \equiv\left(-r_{q}\right)^{2} \equiv a(\bmod q)$, i.e., r_{p} and $-r_{p}$ are square roots of $a(\bmod p)$ and r_{q} and $-r_{q}$ are square roots of $a(\bmod q)$.
Select one square root of $a(\bmod p)\left(\right.$ take $\left.r_{p}\right)$ and one modulo $q\left(\right.$ take $\left.r_{q}\right)$. We use the Chinese Remainder Theorem to compute x such that $x \equiv r_{p}(\bmod p)$ and $x \equiv r_{q}(\bmod q)$. Note that $x^{2} \equiv a(\bmod n)$, since $x^{2} \equiv a(\bmod p), x^{2} \equiv a(\bmod q)$ and $n=p q$. Since there are two choices for the root modulo p and two for the root modulo q, we obtain four distinct square roots of a modulo n by this method.
Let $x_{1}, x_{2}, x_{3}, x_{4}$ be the four square roots of $a \equiv C+d^{2}(\bmod n)$. Then since $x_{i} \equiv M+$ $d(\bmod n)$ for $i=1,2,3$, or $4, M$ is equivalent to one of $x_{1}-d, x_{2}-d, x_{3}-d, x_{4}-d$ modulo n. One of these four values is the correct message.
There is no way to algorithmically determine which of the four possible messages was sent. If the message is English or some other language that has fixed redundancy characteristics, the correct message can easily be determined by examining all four possibilities. Another solution is to append a small bit of fixed text to a message before encrypting. The decryption which contains the same fixed text at the end is taken as the correct message.
(Aside: Breaking Rabin's scheme is provably equivalent to factoring, unlike RSA. This means that if one has a fast algorithm for breaking Rabin's scheme, then that algorithm can be used to factor n quickly.)
6. [6 points] Let $n=p q$ for distinct primes p and q. Given $a, 0<a<n$, let x and $y, 0<x, y<n$, be square roots of a modulo n, so

$$
x^{2} \equiv a(\bmod n) \quad \text { and } \quad y^{2} \equiv a(\bmod n)
$$

Show that $\operatorname{gcd}(x+y, n)=p$ or q if $y \neq x$ and $y \neq n-x$, i.e., finding such x and y allows one to factor n.

Solution:

Since $x^{2} \equiv a(\bmod n)$ and $y^{2} \equiv a(\bmod n)$, we have $x^{2} \equiv y^{2}(\bmod n)$. Hence $n=p q$ divides $x^{2}-y^{2}=(x-y)(x+y)$.
Since $x, y<n$ it follows that $|x-y|<n$, and since $x \neq y$ implies $x-y \neq 0$, we see that n cannot divide $x-y$. Since $0<x, y<n$, it follows that $0<x+y<2 n$. Also, $y \neq n-x$ implies $x+y \neq n$, and hence n cannot divide $x+y$. Thus, since n does not divide either $x-y$ or $x+y$, the fact that n divides $(x+y)(x-y)$ implies that either p or q must divide $x+y$ yielding $\operatorname{gcd}(n, x+y)=p$ or q.

