Lecture 1

Basic Definitions

Definition 1.1 (plaintext, cleartext, in clear). The message or data to be encoded. Usually written in
lowercase when alphabetic.

Definition 1.2 (encipher, encrypt). To render plaintext unintelligible except to the intended recipient.
Definition 1.3 (cipher). A particular method of encryption.

Definition 1.4 (ciphertext, cryptogram). The message after encryption. Usually written in uppercase
when alphabetic.

Example 1.1.
Plaintext: I came, I saw, I conquered.

Cipher: Take each letter of plaintext and substitute the third subsequent letter of the alphabet, cycling from
z to a.

Ciphertext: L FDPH, L VDZ, L FRQTXHUHG.

Note: This cipher is one of the oldest ciphers known. It is usually referred to as the “Julian” or “Caesar”
cipher, because it was first recorded as being used by Julius Caesar.

The General Case

Suppose a transmitter generates a plaintext message M, which is to be communicated to a legitimate receiver
over an insecure channel. To prevent an eavesdropper from learning the contents of M, the transmitter
enciphers M with an invertible transformation Ej, to produce cipertext C = Ey(M).

C is sent along the insecure channel. When the receiver obtains C, he deciphers it by applying the inverse
transformation Dy, to C to obtain M = Dy(C).

Note. DpE) = I, the identity transformation, and Dy, is a left inverse of Ej, (i.e., Dy = Ek_l)

Note. The cipher or cryptosystem, E, defines a family of related transformations, indexed by k, the crypto-
graphic key, and Ej belongs to that family.

We assume that E, the cryptographic system, is not secret, but that k, the key, is secret.

Definition 1.5 (Cryptosystem). A single-parameter family, denoted {E}}rex, of invertible transforma-
tions

EkM—)C
M s Ey(M)=C (M eM,Cec),

where Ej, acts on a message-space M of plaintext messages, and injects it into a cipher-space C of ciphertext
messages, where the parameter or key k is selected from a finite set K called the key space.



Example 1.2 (The general Caesar cipher).
Plaintext: mimams...m,

Each m; is the numerical equivalent of a letter of the alphabet

0o 1 2 3 ... 25
a b ¢ d ... z
Ciphertext: Ej(mq)Ey(ma)E(ms) ... E,(my,)

Ej(m;) = (m; + k) mod 26 (represented as a letter of the alphabet)
K=1{0,1,2,...,25}, |K| = 26

(For the Caesar cipher, k = 3)

LECTURE 1. BASIC DEFINITIONS

If you know the Caesar cipher is being used, you can solve it by a “brute force attack” simply by trying each

key in turn.

e since |K| = 26, this won’t take long

o this system is said to have a small keyspace.

How small is “small?” With modern technology, 107 ~ 25¢ is small (DES has |K| = 25¢)



Lecture 2

Requirements for Cryptosystems

Schematic of a conventional (one-key or symmetric) cryptosystem
COMMUNICATION CHANNEL

MESSAGE | M | TRANSMITTER |  C=ExM) _ | RECEIVER M
SOURCE | | ENCRYPTSM | WHO DECRYPTS [~
TO E (M) CUSING Dy (C)
I ! 1
< EAVESDROPPER
K
KEY SOURCE

KEY CHANNEL
(presumed to be secure)

Note. In order for the encryption to be effective, the key channels must be absolutely secure, as must the
channel from the source to the transmitter. In the real world, this usually means expensive. For example,
the keys to the Moscow-Washington hotline are transmitted by means of highly paid couriers, who fly there
and back every week.

It would be nice to dispense with the key channel. Why bother encrypting when we have a secure channel
already?

® Cost
e convenience
e speed

bandwidth

First General Principle It is generally assumed in cryptography that the knowledge of the general system
or algorithm of encryption, {Ej}rex, is known to the eavesdropper. Only the key & is assumed not to be in
his/her possession.
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Shannon’s desiderata for a “good” cryptosystem

Shannon 1940: A good cryptosystem should:

1.

A

Be highly secure against it’s designer, i.e., the designer of the system should not have any advantage
in decryption;

Use a short, easily-changed key;
Require only simple encryption/decryption;
Not introduce error propagation;

Not entail message expansion.

Note. 2-5 were included because encryption used to be done by low-paid cipher clerks, and mistakes often
happened. Since computers were applied to this purpose, these are less important.

Modern desiderata

1.

2.

As before

As before — key must be small (but small can be many digits long, eg., for storage on a magnetic
card)

As before — operations must be simple (what computers do best), but we can do many of them

Error propagation is now desirable: since we can assume a computer won’t make an error, we want
the enemy to get hit with error propagation

Message expansion is now acceptable (in moderation!), because of the lower cost of transmission.
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Cryptanalysis

Definition 3.1 (Cryptanalysis). The process by which an unauthorized receiver of a ciphertext Ej (M)
determines M without prior knowledge of the key k.

Definition 3.2 (Cryptanalyst). The opponent of a cryptosystem — an unauthorized receiver who prac-
tices the “black art” of cryptanalysis.

Objectives of the cryptanalyst:

1. Passive threat: listening and reading the transmissions

2. Active threat: forgery, sending false transmissions, altering or deleting transmissions

Definition 3.3 (Privacy system). A system that protects against the unauthorized extraction of infor-
mation from a public channel.

Definition 3.4 (Authentication system). A system that protects against the unauthorized modification
or insertion of information in a public channel.

Types of Cryptanalytic Attack

Ciphertext Only Attack (COA)

The cryptanalyst possesses only the ciphertext.

The cryptanalyst may also have a frequency distribution, a statistical analysis of the relative frequencies of
letters in similar text. For example:

e E occurs about 13% of the time in English

e THE is the most frequent 3-letter group in English

However, the cryptanalyst’s knowledge of the plaintext is at best partial.
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Known Text Attack (KTA)

The cryptanalyst has some corresponding plaintext and ciphertext, and must find the encryption key. For
example:

e Diplomatic proposal: it is known that such proposals are usually sent back by the foreign diplomat to
her capital word for word in the original language. If you know which ciphertext corresponds to which
diplomatic proposal, you have knowledge of some corresponding plaintext and ciphertext.

e Timed press release: big corporations often wish a press release to be issued simultaneously world-wide,
so they transmit it to their offices in encrypted form, together with information on when to decode it.
If you have a copy of this ciphertext, you can (perhaps) match it up with the press release.

Chosen Text Attack (CTA)

The same as KTA, but the cryptanalyst is given plaintext and corresponding ciphertext of his own choosing.
For example:

e Diplomatic proposal: if you take an unexpected action, you can be reasonably certain that it will be
reported by the foreign diplomat, and you can probably manipulate the form of the report.

Definition 3.5 (Certified secure). A cryptosystem is certified secure when it has withstood a concerted
attack by cryptanalysts under conditions favorable to them (KTA, CTA) for a long period of time up to the
present. (Note: this is not a precise definition, rather functional)

Means of Cryptographic Attack

1. mathematical

e statistics (frequency distributions, etc.)
e number theory

e group theory

e combinatorics (and graph theory)

e information theory

e etc...
2. side information

e linguistic (human language is full of redundancy)
o formatting (“Dear John,” etc...)
e subject

e known words or phrases (eg. military rank)
3. clandestine

o theft
e bribery
e blackmail

e sex and violence
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Substitution Ciphers

Classical Ciphers

These will be used as a paradigm for cryptanalysis. They fall into two categories:

1. Substitution: the most familiar
2. Transposition: less familiar, but older

Definition 4.1 (Substitution Cipher). A substitution cipher is a cipher in which we replace each character
of plaintext by a substitution cipher symbol: these symbols occur in the same order as the corresponding
character(s) in the message.

Example 4.1. Julian (Caesar) cipher (already discussed)

Example 4.2. Pig Pen cipher. This cipher was actually used in the U.S. Civil War, but it is in fact even
less secure than the Caesar cipher.

Each character of plaintext is replaced by the lines surrounding it, plus a dot if the plaintext character is
the second character in the box.

A B |C D|E F u v
GHI|Il J|K L S T W X
M N|IO P|Q R Y Z
a I I i r e a d y
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The Pig Pen cipher depends entirely upon the method, and not the key.

Example 4.3. Monoalphabetic Substitution cipher. Each letter of the plaintext is replaced by a letter of a
single substitution alphabet (eg. cryptograms and cryptoquotes from the newspaper). Note that both the
Caesar and Pig Pen ciphers are monoalphabetic.

One method for construction monoalphabetic substitution ciphers

1. Take the key: Dan Roscoe

2. Eliminate duplicates: DANROSCE

3. Add balance of alphabet: abcdefghijklmnopgrstuvwvzxyz
DANROSCEBFGHIJKLMPQTUVWXYZ

If this were the cipher, we would have seven collisions (letters that encrypt to themselves). In order to reduce
this number, we can reorganize the cipher alphabet

DANRDOSCE
BFGHIJKL
MPQTUVWX
Y Z

and construct the cipher from the columns:

We now have four collisions, and using other rearrangements it is possible to reduce this even further.

We encode:

come at once attack commencing
MOHA DV OTMA DVVDMQ MOHHATMNTP

Definition 4.2 (Informal Cipher). ciphertext has the same spacing and punctuation as the plaintext

Informal ciphers give the cryptanalyst a lot of information about the plaintext via lengths of words and
punctuation. In order to keep this information from the cryptanalyst, formal ciphers are typically used.

Definition 4.3 (Formal Cipher). ciphertext contains no punctuation, symbols appear in groups of five

Example 4.4. The previous example as a formal cipher:
MOHAD VOTMA DVVDM QMOHH ATMNT PXUVW

Note the addition of four nulls at the end. These are used to pad the final group of ciphertext symbols to
five characters.

Security of Monoalphabetic Substitution Ciphers

Note that we have |K| = 26! ~ 4 x 1026 ~ 289 so exhaustive search is currently infeasible. Nevertheless,
these ciphers are in general completely insecure.

Weaknesses:



1. highly vulnerable to KTA. Each bit of corresponding plaintext and ciphertext reveals some of the
cipher.

2. Redundancy in any language generally yields the key with sufficient ciphertext. This is because the
frequency distribution of the plaintext alphabet in a given language can be established statistically and
compared with the ciphertext.

Note. In order to use frequency distributions, it is important that there be sufficient ciphertext. If the
ciphertext is too short, it may not be possible to cryptanalyze solely using redundancy. In fact, there are
still examples of ciphertexts that have yet to be broken (often allegedly giving the location of buried treasure).

Definition 4.4 (n-gram, n-graph). a sequence of n letters

The following table contains a sample of expected frequency distributions based on military text (taken from
“Manual for the Solution of Military Cipers” by Parker Hitt).

Table 4.1: Frequencies of letters, digraphs, and trigraphs in English

Single Letters Digraphs Trigraphs
(based on 10000 letters) (based on 2000 letters) (based on 10000 letters)
E 1277 TH 50 THE 89
T 855 ER 40 AND 54
(0] 807 ON 39 THA 47
A 778 AN 38 ENT 39
N 686 RE 36 ION 36
I 667 HE 33 TIO 33
R 651 IN 31 FOR 33
S 622 ED 30 NDE 31
H 595 ND 30 HAS 28
D 402 HA 26 NCE 27
L 372 AT 25 EDT 27
U 308 EN 25 TIS 25
C 296 ES 25
M 288 OF 25
P 223 OR 25
F 197 NT 24
Y 196
W 176
G 174
B 141
A% 112
K 74
J o1
X 27
Z 17
Q 8

Note. Most frequent pairs are high frequency vowels with high frequency consonants.

Note. Repeated letters can also give us a lot of information. For example, the vowels O and E are commonly
repeated, while A, I, and U are rarely repeated, if ever.
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Example Cryptanalysis and Codes

Example 5.1. Consider the following message from Edgar Allen Poe’s “The Gold Bug.” The original was
written with strange symbols, which have been converted to letters below:

DYZZB YQDRR FPGAM HFRAZ TRAZR
GMQFP GAMBM OFQRR MDGGI MPGUZ
PMBMY NMMRD PBGAF NGMMP SFPJG
MRPZN GAMDR GDPBH UPZNG ASDFP
HNDPV ARMOM PGAQF SHMDR GRFBM
RAZZG CNZSG AMQMC GMUMZ CGAMB
MDGAR AMDBD HMMQRF PMCNZ SGAMG
NMMGA NZJYA GAMRA ZGCFC GUCMM
GZJGX
This ciphertext yields the following frequency distribution:

Single Letters Digraphs Trigraphs Double Letters
M 34 GA 12 GAM 7 MM 5
G 27 AM 8 RAZ 4 77 2
A 19 RA 5 PGA 3 RR 2
R 16 FP 5 GG 1
V/ 15 MD 5
P 14 MM 5
D 13 GM 4
F 11 PG 4

Based on our frequency counts, we suspect GAM = the, and the rest of the cryptanalysis follows relatively

easily.

11
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5.1 Codes

We could try to get around the weaknesses of monoalphabetic substitution ciphers by having several different
symbols for frequently occurring words, letters, etc... (called homophones).

We could also have special symbols for frequently occurring words and special names. This was done in
the period 1400-1850 (especially diplomatic codes). Such lists of symbols, words, and names are called
nomenclators, and an encryption scheme based on them is called a code.

A code consists usually of thousands of words, phrases, letters, and symbols with the code-words or code
numbers (code groups) that replace these elements. Note that a code can be considered as a very large
cipher alphabet, with “symbols” of varying length.

There are two types of codes:

1. 1 part code: can be used to both encode and decode. Both plaintext and ciphertext symbols are in
lexicographic order. Example:

ship MXTWI
ship is MXTXA
ship is not MXTXC
ship is not to MXTYJ

ship is not to be MXUAA

2. 2 part code: one book used to encode, another to decode. The encoding book has the plaintexts in
order, and the decoding book has the ciphertexts in order. Both books contain exactly the same pairs
of plaintext/ciphertext — only the order is different (in order to aid encoding and decoding). Example:

Part 1 Part 2
ship UPUFO | DAFET will be
ship is BECEC | DAFEW 26 October
ship is not ATOHI | DAFEX New York
ship is not to BUHAG | DAFEY null
ship is not to be ZENDA

Advantages:
1. frequency distibutions of single characters, digraphs, etc. are not useful
Weaknesses:

1. code books can be stolen. Eg. British navy recoving code books from sunken German submarine in
WWIL

2. essentially a monoalphabetic substitution cipher with very large plaintext alphabet (same weaknesses:
frequency distibution and KTA). Eg. code 0075 (2 part, 10000 code words) and the Zimmerman
telegraph.

Codes are no longer considered secure. However, they are and have been frequently used for compression
(eg. telegraph). Superencipherment is typically used for security — simply encrypt the ciphertext which is
obtained from applying the code.
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n-gram Encipherment

Enciphering several letters at a time rather than single letters is known as n-gram encipherment — we enci-
pher n letters as a group. This smooths out the frequency counts that are useful in breaking monoalphabetic
systems.

Consider digraphic encipherment (n = 2):
Plaintext | Monoalphabetic | Digraphic

se RM ER
ae DM FI

Note that in the monoalphabetic cipher, e always encrypts to M, whereas it varies in the digraphic cipher.
Advantages (digraphic):
1. need more text to get useful frequency data

2. larger plaintext alphabet (676 digraphs as opposed to only 26 letters)

6.1 The Playfair Cipher

e 1854 - Charles Wheatstone, named after his friend Baron Playfair
e digraphic cipher
e possibly used in the Boer War by the British

e originally considered too difficult for attachés to use!

1. Select a keyword to rearrange the alphabet (as usual, drop any duplicate letters)
Keyword: MAGNETIC

MAGNETTIC
BDFHJKLDO
PQRSUVWX
Y Z

2. Drop “J” from our initial cipher alphabet (so I and J will be considered as the same letter). Arrange
the remaining 25 letters in a 5x5 square:

13
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MBPYA
DQZGF
RNHSE
UTKVI
LwWwCO0OX

3. Insert an “x”

this is safe.

(i-e. a null) between double plaintext letters. Note that “xx” never occurs in English, so

Lord Granvilles letter
Lo rd Gr an vi 1x le sl et xt er

4. Encrypt pairs of letters (digrams) as follows:

(a) The letters are in the same column of the square: replace them by the letters immediately below
them. Cycle as needed.

MBPYA MBPYA
DQZGF DQZGF
RNHSE —- RNHSE
UTKVI UTKVI
LWCDO0X LWCO0X

(the digraph “rd” encrypts to “UR,” “cz” encrypts to “PH”)

(b) The letters are in the same row of the square: replace them by the letters immediately to their
right. Cycle as needed.

MBPYA MBPYA
DQZGF DQZGF
RNHSE — RNHSE
UTKVI UTKVI
LwcCcOZX LWCO0OX

(the digraph “lo” encrypts to “WX,” “ne” encrypts to “HR”)

(¢) Otherwise: replace each letter by that which lies in its row and stands in the column occupied
by the other plaintext letter. The letter in the row of the first plaintext letter is taken first to
preserve order.

MBPYA MBPYA
DQZGF DQZGF
RNHSE — RNHSE
UTKVI UTKVI
LWCOZX LWCDOZX

(the digraph “gr” encrypts to “DS,” “ty” encrypts to “VB”)

Thus, we have:

Lord Granvilles letter

lo rd gr an vi 1x le sl et xt er
WX UR DS BE IU WL XR RO NI WI RN
WXURD SBEIU WLXRR ONIWI RNXAC

(Note the nulls “XAC”)

To decrypt, construct the same grid (based on the keyword!) and use Step 4, modified to reverse a. and b.



Lecture 7

Polyalphabetic Substitution Ciphers

7.1 General n-grams and the Hill Cipher

The Playfair cipher is an example of a digraphic encipherment technique. One type of general n-gram
encipherment (for arbitrary n) is called the Hill cipher.

1929 — Lester S. Hill (math professor in New York)

The Hill cipher is based on linear algebra. Treat each n-gram as a vector (numerical equivalents of plaintext
letters). Set up a linear transformation matrix and multiply to produce the ciphertext.

Unfortunately, the Hill cipher is vulnerable to attacks based on linear algebra.

No practical use (too complicated, too much error propagation), but important in establishing the link
between cryptography and mathematics.

Hill cipher:

1. Assign a number to each letter (a=0, b=1, etc...)

2. Chose an enciphering matrix E,,x, (which will function as the key) such that all entries are integers
and
ged(|E|, L) =1,

where |E| = det(E) and L is the size of the plaintext alphabet (in our case, L = 26).

3. Let D be a matrix such that
DE=1 (mod L)

(i.e., D is a left inverse of E mod L)

Note that since we know there exists z such that z|E| = 1 (mod L) (assuming ged(|E|, L) = 1), we

can construct
D=2z -adj(E),

and since adj (E) /|E| = E~! and z = |E|™" (mod L)

D=z-adj(E)=E™' (mod L) .

4. To encrypt an n-gram, let z; be the numerical equivalent of the ith letter of & = (x1,z2,...,2,), the
plaintext n-gram. Compute the ciphertext n-gram ¢ = (y1,¥2,. - .,Yyn) using

Ef =7 (modL) .

15
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5. To decrypt:

Example 7.1. Let n = 2 (L = 26) and

Plaintext:

To encrypt “go:”

8
I
7~
o’
<
Il
(=}
=)
N———

o

= 2=
| () = (4)
- ()-6)-0)

Ciphertext:

12 4 21 0 23 23 16 6
M E V A X X Q G
MEVAX XQGIL

(Note the nulls “IL”)

Note that in this case

18 19
b= (15 17)

Weaknesses of Playfair and Hill

1. Playfair: solved by using sufficient data in order that repetition of letter pairs can be used to reconstruct
the square. Frequency counts are used and also the fact that if “ab” encrypts to “XY,” then “ba”
encrypts to “YX.”

2. Hill: solved by using n-gram frequency distributions and linear algebra manipulation.

Both the Playfair and Hill ciphers fall almost immediately to a KTA.
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Polyalphabetic Substitution Ciphers

Frequency statistics are smoothed out even further using a polyalphabetic substitution cipher.

Definition 7.1 (polyalphabetic substitution cipher). a cipher in which several cipher alphabets are
used in the replacement of the plaintext characters.

Example 7.2. Suppose we use the key “BLACKSTONE.” We produce a sequence of numbers from the key
by writing the numbers representing the order in which the letters of the key would appear in the alphabet.

Here we have

B L A C K S T 0 N E
2 6 1 3 5 9 10 8 7 4
To encrypt, write the key number sequence (K1, ..., Kjp in this example) under the plaintext. Replace the

plaintext letters above k; by the letter k; positions beyond it in the alphabet. (L.e., we are using 10 different
Caesar ciphers.)

We encrypt the plaintext “stay in current position” as follows
s t a y i n c u T r e n t P o s i t i o n
18 19 0 24 8 13 2 20 17 17 4 13 19 15 14 18 8 19 8 14 13
B L A C K S T 0 N E B L A C K S T 0 N E B
2 6 1 3 5 9 10 8 7 4 2 6 1 3 5 9 10 8 7 4 2
20 25 1 1 13 22 12 2 24 21 6 19 20 18 19 1 18 1 15 18 15
U Z B B N W M C Y vV G T U S T B S B P S P

yielding the ciphertext “UZBBN WMCYV GTUST BSBPS PXXXX.”
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Vigenere Cipher

A more general version of the example from the previous lecture is the Vigenere cipher (from the 16th
century). This cipher uses the numerical value of the letters of the keyword for successive Caesar ciphers.

Example 8.1. key = BLACKSTONE

plaintext: stay in current position

n t P o s i t i o n

s t a y 1 n (¢ u r r e

18 19 0 24 8 13 2 20 17 17 4 13 19 15 14 18 8 19 8 14 13
B L A C K S T 0 N E B L A C K S T 0 N E B
i 11 0 2 10 18 19 14 13 4 1 11 O 2 10 18 19 14 13 4 1
19 4 0 O 18 5 21 8 4 21 5 24 19 17 24 10 1 7 21 18 14
T E A A S F \Y I E v F Y T R Y K B H \ S 0

ciphertext: TEAAS FVIEV FYTRY KBHVS OXXXX

Originally, encryption was done by way of a Vigenere table (Table 8). To encrypt, use the key to select the
row and the plaintext letter to select the column of the corresponding ciphertext character.

19
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Table 8.1: The Vigenere Table

ABCDEFGHIJKLMNOPQRSTUVWIXY?Z

IJKLMNOPQRSTUVWXYZABCDEFGH

OPQRSTUVWXYZABCDEFGHIJKLMN

A|ABCDEFGHIJKLMNOPQRSTUVWIXY?Z
B|BCDEFGHIJKLMNOPQRSTUVWIXYZA
C|{CDEFGHIJKLMNOPQRSTUVWXYZAB
DI IDEFGHIJKLMNOPQRSTUVWXYZABC
E{EFGHIJKLMNOPQRSTUVWXYZABCD
F{FGHIJKLMNOPQRSTUVWXYZABCDE
G|IGHIJKLMNOPQRSTUVWXYZABCDETF
H{HIJKLMNOPQRSTUVWXYZABCDETFG

I

J|{JKLMNOPQRSTUVWXYZABCDEFGHTI
K|IKLMNOPQRSTUVWXYZABCDEFGHTIJ
LILMNOPQRSTUVWXYZABCDEFGHTIJK
MIMNOPQRSTUVWXYZABCDEFGHTIJKL
NINOPQRSTUVWXYZABCDEFGHIJKLM

0

PIPQRSTUVWXYZABCDEFGHIJKLMND
Q| QRSTUVWXYZABCDEFGHIJKLMNOP
RIRSTUVWXYZABCDEFGHIJKLMNOPRQ(Q
S|STUVWXYZABCDEFGHIJKLMNOPQR
T I TUVWXYZABCDEFGHIJKLMNOPQRS
U|UVWXYZABCDEFGHIJKLMNOPQRST
VI VWXYZABCDEFGHIJKLMNOPQRSTTU
W WXYZABCDEFGHIJKLMNOPQRSTUYV
X XYZABCDEFGHIJKLMNOPQRSTUVW
Y YZABCDEFGHIJKLMNOPQRSTUVWX
Z|ZABCDEFGHIJKLMNOPQRSTUVWIXY



8.1. ANALYSIS OF THE VIGENERE CIPHER

8.1 Analysis of the Vigenere Cipher

Assume we know the number n of cipher alphabets used (i.e. the length of the keyword). This assumption

will be justified later.

We form n subtexts To,T1,...,Tnh_1 by selecting the (i + 1)st letter of the ciphertext and every nth letter
thereafter (each of these subtexts is a Caesar cipher where the key letter is the ith letter of the keyword).

Using the fact that the most commonly occurring letters are E, T, O, A, and N we can usually find the key

letter K; corresponding to each subtext T;.

Example 8.2. Consider the following ciphertext:

BIPIZ VYPVK JLXAD VUBPP
WPCES CTMRD SIAGW ROCEL
QBXEL XWPWZ VWPKE ODWAQ
KEMGC JWDLW AIJGM ZQWHU
PWEDZ GZCSL TKVSZ RLWIP
RXDZ0O KEMGC AVYCI VDVAY
SITKW TXSRK GCDXG PCVRZ
TIPND SXIEC PBTJD LWMEW
VVSQC SCLER PGCIP GKFXZ
EMPWK IWCCJ WLTUC XOMLH
DPGLX VHYCQ SIQQX PZWCN
DXWBK CXPBL TVFNL XSRWP
YFXKC DTSFH BGBXM FPTUK
EDVGV ZGSIQ QXESS CWVRP
PAVBT GLHMV YQVMA MUDZI
AVYCI VDZVB LRKBQ VDPHL
GXYIW SMFPZ VHGWE ODWAC
DSEFR IPBPH MRMKX QSJBI
NELXW PCYIL LWTUL WOTTN
PGEUG XESXT VEBJT LXWPZ
QHBGW TWSKM TCLXA AMVYZ
UWTWL XADVV RCSMV PGXNV
QPQLR VHVCD PVEXV CVSEJ
EBJTL XVHYC QSIQQ WLYLD
XMCLW MVOCQ ACINE DIJDZ
LOWNE JSNLA CLKFT HMPTK
VQEBU KATDX KCDTS FXVHY
ACINY CGGBX WDPVD DKCDT
DVUXP XODZM KEXZT ZGMPM
BJODE ETSGI TWMHM FDZHW
GCELW CMVGZ VCXVC NOMLX
WAVGK QFODO WNOGX PVSIQ
ZTWGI VSZRS ANGKE YJTAV
GKTKW BTXQD NVRPW MQAAC

Assume that we have deduced that the keyword has length 7 (i.e., that 7 subalphabets were used). We do

QDVEY
XWPCC
TGDZQ
QBPEU
IZYEP
FVHGM
VAOMF
ZPDGP
DZKJL
QPPZV
WBELW
DCSDP
YHDXV
VAICU
FRZAZ
DIPYE
0KDPQ
VSZRW
KDTJD
CSYGI
PXDZE
QEBKY
SECBP
UCDTG
CZAPA
JPWLW
CQSIQ
SFPVF
NXVID
RZAZE
WPDZX
QXVIQ
RLXWC
EIE

XTMIM
YFCQP
GGMRO
RMUCT
GPYHL
0SDIK
ZPSHA
PELJZ
XADVQ
EPBKY
GBJOT
VFCZS
MCELS
ODEKD
ESJHK
LWGTQ
HAWAC
MXQCF
DKNPE
0CELW
YYXJD
YFQPK
JWPBW
SATAK
RIVSZ
MCVRS
QXMIX
0YXWG
PVEXV
XZTQP
ZTINQ
BIPKR
PCXNI

a separate frequency count for each subtext as follows:

TCLRV
QDQGD
ZTDTE
FDTQP
SKMAY
QGRRD
MUSXM
GCELS
PAIGE
YRGLB
FERZA
LTKVS
IAROP
XJSDX
TKXFD
MLXAD
PRUGG
VWHEK
KNAVO
XJOMC
TNSYK
QWMMF
BPWAI
YHOXB
RMHQP
JXBJW
DZGSE
AAYFV
CVZVU
PZVEP
ZVAIP
IETVV
LWMDK

SIVKN
BJVJF
KDSMF
PZVEP
FGSCV
CARIN
DPZNI
CKCXM
TGDCC
JOCIA
ZESYG
ZRLDB
HACNQ
ARIVO
TLCDL
VCXOH
RDTSF
DSMEN
XFSHM
CHIWI
SCLRB
PBKYY
KCXPR
JYFXA
QLRSA
ELWHC
MKHMP
VPBCM
DUREE
BKYYE
ODSIA
FPVAU
DMURZ

SEBCP
QBIMS
IPGYX
BKYYV
QGAVG
WPEKJ
TFEWI
IMHMF
ACOVY
HIYKJ
IRRTG
JOOEL
BXELX
OEDVW
FWUWT
WRZAZ
IMERY
WWBNS
HYCXZ
BLTZX
ZXWRB
SXEZQ
UGGRD
CBGBG
0QBTX
DCJWL
DQVGB
ZQEJV
IJAWE
XIMTS
QUUEM
QEKEM
AZESY

SNELX
YKACN
KSCQB
WFCKB
IMEDT
ZGCEL
TNHEJ
DZMVT
REACI
XGEWT
KJJUI
PKQWX
WPPCS
TSELE
OTXAH
EMLLP
MIJMU
EBCPS
TLGFP
KUEMW
KXRMF
QCEEB
LRVSM
IFIQQ
ZBIPN
TUGXN
1vocq
KMLXA
KEMGC
EPWPD
WQHBG
GCIPN
GIRRT
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Subtext 0 | Subtext 1 | Subtext 2 | Subtext 3 | Subtext 4 | Subtext 5 | Subtext 6
D 27 | M 27 | G 26 | D 28 | P 31|V 26 | A 29
C 23 |V 26 | P 26 | Y 24 | Z 29 | X 26 | L 27
I 21 | I 25|V 26 | B 20 | E 28 | S 23 | W 24
T 21 | W 21 | C 21 | X 19| C 20 | E 19| S 21
X 21 | B 20 | K 18| C 18 | L 19 | 1 19 | E 18
P 20 | Z 18| Q 171 O 17| T 19 | M 18| G 15
H 17 | Q 16 | E 12| S 17 | D 15| W 16 | F 14
R 14 | K 15| U 12 | K 16 | Y 14 | R 14| J 11
G 13| T 9| A 11 | R 10 | X 9| L 11 | K 9
B 12 | A 8| R 11| W 10 | N 8| Q 10| M 9
A 8| U 71T 10| Z 9 M 6| T 91 Q 9
E 6| L 6| J 9| M 8| J 6| G 9| D 9
J 5| P 6| F 8| P 81| S 6| F 8| Z 8
W 5| C 6| N 7| N 7| F 6| H 8| V 7
Q 4| N 5| W 71 Q 5|0 5| P 5| X 7
S 4 | E 510 5| 1 5| A 5] C 5|1 U 5
N 4| G 4 | H 4|V 51 Q 4|Y 5| H 5
K 310 4 | M 3| E 4| R 4 | K 31Y 4
U 3| J 4| 1 2| F 3| H 21 0 2| C 3
L 3| D 3| D 2 J 3| G 1| B 110 3
A% 2| X 3| B 1| G 2|V 1] 7] 1| N 1
F 1| S 1Y 1| U 1| B 1| Z 1] 1 1
O 1| R 0| L 0| T 0| W 0| D 0| B 0
M 1| H 0] X 0| A 0 I 0| N 0| T 0
Y 0|lY 0] S 0| L 0| K 0] U 0| R 0
Z 0| F 0| Z 0| H 0| U 0] A 0| P 0

Notice that the most commonly occurring letters (and their numerical equivalents) in Tp are

D C I T X P H R G
3 2 8 19 23 15 7 17 6
The letters E, T, A, and O correspond to the numbers 4, 19, 0, and 14. Let K be the numerical equivalent
of the key letter for Ty. Then “e” is encrypted to 4 + Ky (mod 26). Since {3,2,8,19,23,15,7,17,6} are the
numerical values of the most frequent ciphertext characters in Ty, with high probability we have

4+ Ko € {3,2,8,19,23,15,7,17,6}

Koy € {25,24,4,15,19,11,3,13,2} .
Similarly, “t” is encrypted to 19 + Ky (mod 26) and we expect that
19+ K, € {3,2,8,19,23,15,7,17,6}
K, € {10,9,15,0,4,22,14,25,13} .
By considering “0” and “a” we obtain
14+ Ky € {3,2,8,19,23,15,7,17,6}
K, € {15,14,20,5,9,1,19, 3,18}
0+ Ko € {3,2,8,19,23,15,7,17,6}
Koy € {3,2,8,19,23,15,7,17,6} .
Since 15 is common to all these sets, we suspect that Ko =15 = the first letter of the keyword is “P.”
Note. The method described above is known as Kerckhoff’s shortcut.
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The ¢-statistic

The variation in frequencies of the occurences of elements in a non-random text is greater than those for
random text. ¢ is a measure of this variation. The value of ¢ will aid us in deciding whether or not a
polyalphabetic cipher has ben resolved into its basic components (i.e., we know the number of alphabets
used).

Definition 9.1. Denote by:

N number of characters in the text
n  number of characters in the alphabet (n = 26 for english)
fi number of times the ith alphabetic character occurs in the text.

(observe that Y f; = N). We define the ¢-statistic as
o= filfi-1).
i=1

Note. For a given text of length N, ¢/(N(N — 1)) is the probability that two randomly-chosen ciphertext
characters are identical. This is often refered to as the index of coincidence, denoted Io(N).

1) # pairs containing only char i: (’;) = fi(fi—1)/2

2) # pairs containing double chars: " fi(fi —1)/2

3) # total pairs: (§) = N(N —1)/2

Ic(N) = equation 2/equation 3

Theorem 9.1. The expected value of ¢, E(¢), is given by
E(¢) = S2N(N —1)

where

and P; is the relative frequency of the ith character in the alphabet.

(Proof omitted)
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Note. For random text
1 “1 1
.Pz' = E, 52 = E F = — .

. n
=1

Thus, if n = 26, then for random text Sz ~ 0.0385. (Note that this is the minimum value — less random
text has larger values)

For non-random English text S; =~ 0.0661.

Idea:

e Compute ¢ (observed value)
e Compare with E(¢) for random and english text
Example 9.1. Ciphertext: IBMQO PBIUO MBBGA TCZOF MUUQB (N = 25)

Compute ¢ :
fi | fi=1 ] filfi=1) | k| k(f))(fi = 1)
B 5 4 20 | 1 20
M,O,U | 3 2 6|3 18
I,Q 2 1 2| 2 4
Others | 1 0 017 0
¢ =42

For English, E(¢) = SoN(N — 1) ~ 0.0661(25)(24) ~ 39.66.

For random text, E(¢) ~ 0.0385(25)(24) ~ 23.1.

Since ¢ = 42 for the example, this ciphertext is probably a monoalphabetic substitution cipher.
Example 9.2. Ciphertext: HKWZA RRPVQ BIVYS MPDMQ MBUDC (N = 25)

¢=18

Since 18 is closer to 23.1 than to 39.66, this is likely random text, and at least not a monoalphabetic
substitution cipher.

Note. 0.0385N (N — 1) is the minimum expected value. The observed values could be less (minimum is 0 —
only singly-occurring characters)
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Determining the Number of
Alphabets

10.1 ¢-statistic Method

For sufficient ciphertext, the ¢ statistic will resolve the number of alphabets used, even if it is large, because
the ¢-statistic can be averaged over all alphabets.

Example 10.1. (Naive statistically — usually make use of various normal probability distributions)

Consider the following ciphertext, which is known to be enciphered polyalphabetically with a number of
alphabets between 40 and 50 :

HSKUS
YPPNE
HQXZS
LIJHW
FCSKT
IEAXO
0ARFU
AFROU
KKZLT

PMFHD
USAIG
ACKRK
ARLKF
GOOYB
KAQDW
ERJOY
NYNBD
PHKRT

UJJIX
BOOGA
VBGHM
IJSLT
XZVLI
EXPYP
BDOKE
VQOBE
CCOAS

MSPTP
OPGPR
VSFRY
MHKAH
JRYAC
QHDNO
IKDUV
GGSHQ
BZUGB

0IPCI
HBOUC
YTKHK
QTUVT
DWEJM
JIXNZ
TDVEV
HXOPU
UBBUN

WKZVU
SHPVG
VWZXV
XSMEC
SCAFP
JGNUD
LETDO
ZCOCU
OVTPO

VMIZD EPQFV

KZ

Assuming the 50 alphabets were used, the message would be rewritten as

In the last line of the previous table, we calculate ¢ for each of the 50 subtexts, some with 6 characters
and some with 5. We average all the ¢ values for the 6 character subtexts, and likewise for the 5 character

subtexts:

1 2 3 4

01234 56789 01234 56789 01234 56789 01234 56789 01234 56789
1 HSKUS PMFHD UJJIX MSPTP O0IPCI WKZVU YPPNE USAIG BOOGA OPGPR
2 HBOUC SHPVG HQXZS ACKRK VBGHM VSFRY YTKHK VWZXV LIJHW ARLKF
3 IJSLT MHKAH QTUVT XSMEC FCSKT GOOYB XZVLI JRYAC DWEJM SCAFP
4 TEAXO KAQDW EXPYP QHDNO JIXNZ JGNUD OARFU ERJOY BDOKE IKDUV
5 TDVEV LETDO AFROU NYNBD VQOBE GGSHQ HXOPU ZCOCU KKZLT PHKRT
6 CCOAS BZUGB UBBUN OVTPO VMIZD EPQFV KZ
¢ 40222 02020 20000 02002 62000 22000 22002 02000 20200 00000

25



26 LECTURE 10. DETERMINING THE NUMBER OF ALPHABETS

N=6 N=5
¢ wi; wid | ¢ w;  wid
0o 17 00 14 0
2 13 26 | 2 4 8
4 1 4| 4 0 0
6 1 6| 6 0 0
S 32 36|5 18 8
(w; is the number of subtexts having ¢ = ¢;).
To compute the average ¢ (denoted by @):
%= 2 widi _ 29
> w; # of subtexts
N=6 | N=5
¢ =236/32=1.125 ¢ =28/18 ~ 0.44

E(¢)m = 0.0661(6)(5) ~ 1.98 | E(¢)r = 0.0661(5)(4) ~ 1.32
E(¢)r = 0.0385(6)(5) ~ 1.15 | E(¢)r = 0.0385(5)(4) ~ 0.77

This indicates that the number of cipher alphabets used is probably not 50, since the average ¢ values are
closer to the expected values for random text (E(¢)r) than to English (E(¢)r). So, we try 49, 48, 47, etc...
until we try 43.

Assuming the 43 alphabets were used, the message would be rewritten as

1 2 3 4
01234 56789 01234 56789 01234 56789 01234 56789 012
HSKUS PMFHD UJJIX MSPTP OIPCI WKZVU YPPNE USAIG BOO
GAOPG PRHBO UCSHP VGHQX ZSACK RKVBG HMVSF RYYTK HKV
WZXVL IJHWA RLKFI JSLTM HKAHQ TUVTX SMECF CSKTG 00Y
BXZVL IJRYA CDWEJ MSCAF PIEAX OKAQD WEXPY PQHDN O0JI
XNZJG NUDOA RFUER JOYBD OKEIK DUVID VEVLE TDOAF ROU
NYNBD VQOBE GGSHQ HXOPU ZCOCU KKZLT PHKRT CCOAS BZU
GBUBB UNOVT POVMI ZDEPQ FVKZ
00000 01000
20244 42426 40242 46040 44462 04822 04204 22242 462

V(N O O W N

We calculate ¢ for each of the subtexts and average over all subtexts of the same length:

N=7 N =6
b w; wid | i wj w; P
0 4 0] 0 3 0
2 6 1202 9 18
4 11 4|4 4 16
6 3 186 1 6
8 1 8
14 1 14
S 24 4> 19 62
¢ =T74/24 ~ 3.08 ¢ =62/19 ~ 3.26
E(¢)m = 0.0661(7)(6) ~ 2.77 | E(¢)m = 0.0661(6)(5) ~ 1.98
E(¢)r = 0.0385(7)(6) ~ 1.61 | E(¢)r = 0.0385(6)(5) ~ 1.15

These values are a good indication that the number of cipher alphabets is 43, since the ¢ values are closer
to the expected values for English than those for random text.

Conclusion: much more redundancy than for random text = not random =—> probably English.
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10.2 Factoring Method

The factoring method (also known as the Kasiski method), can be used when the number of alphabets is
small, or there is a lot of ciphertext.

The basic idea is the following: if k£ alphabets are used and an n-gram G, in position ¢ is encrypted to C,
then that same n-gram in position i +mk will also encrypt to C),. In other words, if two identical segments of
plaintext are enciphered by identical segments of the key, the resulting ciphertext segments will be identical.

Example 10.2. In this example, the plaintext tx is encryted by AT each time. The distances between

repititions of the ciphertext DC are multiples of 4, the length of the keyword.

One can take advantage of this by looking at all repititions in the ciphertext and looking at the distances
between individual repitions. The number of alphabets will likely be equal to the gecd of these distances.

axtlf btleg ...tl
BOATB OATBO ...AT
--DC- -DC-- ...DC

Example 10.3. Consider the following ciphertext:

SIJYU
QWBRI
CTGYO
CCBYQ
QVFWY
BXDBN
KILCJ
LVVCS
EVGQU
IBWRX

The principal repititions of three or more letters have been underlined in the message and the factors (up

MNVCA
VWYIG
BPDBL
OPDKA
RWNFL
PXFPU
MFDZT
QWBII
VPYHL

ISPJL RBZEY QWYEU
BWNBQ QCGQH IWJKA
VCGXG BKZZG IVXCU
GDGIG VPWMR QIIEW
GXNFW MCJKX IDDRU
YXNFG MPJEL SANCD
CTJRD MIYZQ ACJRR
IVJRN WNBRI VPJEL
LRZNQ XINBA IKWJ

LWMGW ICJCI
GEGXN IDMRU
NTZAO BWFEQ

ICGXG BLGQQ

0PJQQ ZRHCN
SEZZG IBEYU
SBGZN QYAHQ
TAGDN IRGQP
RDZYF KWFZL

to 20 only) of the intervals between them are as follows:

MTZEI MIBKN
VEZYG QIGVN
QLFCO MTYZT
VBGRS MYJJY
VWDYQ RDGDG
KDHCA MBJJF
VEDCQ LXNCL
ATYEW CBYZT
GWFJQ QWJYQ

Fragment Distance Factors
CGXGB 60 2,3,4,5,6,10,12,15,20
PJEL 95 5,19
BRI 285 3,5,15,19
QRD 165 3,5,15
QWB 275 5,11
WIC 130 2,5,10,13
XNF 45 3,5,9,15
YZT 225 3,5,15
ZGI 145 5

The factor 5 is common to all of these repititions, and there seems to be every indication that five alphabets
are involved. Certainly, this is not a proof that five alphabets were used — it is only a working hypothesis.

Note. Factoring may not work if there are coincidental repitions of ciphertext. In this case, look for the
most common factor amongst the repitions (trial and error).
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Lecture 11

Mixed Polyalphabetic Ciphers

\

igenere

11.1 Mixed V

One major problem with the Vigenere cipher is that every subtext is simply a Caesar cipher, and Kerckhoff’s

shortcut can be used very effectively to find the keyword. This was addressed by using, instead of a plain

alphabet in the Vigenere Table, a disordered alphabet.

Example 11.1. As with regular Vigeneére, select the column according to the plaintext symbol and the row

according to the key.

ABCDEFGHIJKLMNOPQRSTUVWXY?Z

THBCDFGIJKMPQSUXYZLEAVNWOR

GIJKMPQSUXYZLEAVNWORTHBCDF
IJKMPQSUXYZLEAVNWORTHBCDTFG
JKMPQSUXYZLEAVNWORTHBCDFGI

ZLEAVNWORTHBCDFGIJKMPQSUXY

A{LEAVNWORTHBCDFGIJKMPQSUXY?Z
B|{EAVNWORTHBCDFGIJKMPQSUXYZL
C|AVNWORTHBCDFGIJKMPQSUXYZLE
D|{VNWORTHBCDFGIJKMPQSUXYZLEA
E{NWORTHBCDFGIJKMPQSUXYZLEAYV
F{WORTHBCDFGIJKMPQSUXYZLEAVN
G|ORTHBCDFGIJKMPQSUXYZLEAVNW
H{RTHBCDFGIJKMPQSUXYZLEAVNWO

I

JIHBCDFGIJKMPQSUXYZLEAVNWORT
K{IBCDFGIJKMPQSUXYZLEAVNWORTH
LICDFGIJKMPQSUXYZLEAVNWORTHB
M|DFGIJKMPQSUXYZLEAVNWORTHBC
N|{FGIJKMPQSUXYZLEAVNWORTHBCD

0
P
Q

R{IKMPQSUXYZLEAVNWORTHBCDFGTIIJ
S|IMPQSUXYZLEAVNWORTHBCDFGIJK
TIPQSUXYZLEAVNWORTHBCDFGIJKM
U|QSUXYZLEAVNWORTHBCDFGIJKMP
VISUXYZLEAVNWORTHBCDFGIJKMPAQ
W UXYZLEAVNWORTHBCDFGIJKMPAQS
X XYZLEAVNWORTHBCDFGIJKMPQSTU
Y YZLEAVNWORTHBCDFGIJKMPQSUX

Z
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Analysis
More difficult than regular Vigenere, must nevertheless insecure:

1. resolve the number of alphabets (as before — each is still monoalphabetic)

2. use frequency counts to determine the most common characters in each cipher alphabet. Attempt to
separate the vowels from the consonants in each subtext.

3. use the principal of “symmetry of position”

Symmetry of Position

Each row of a particular cipher alphabet is a cyclic shift of any of the others. Hence, if the relative position
of a pair of characters is known in one row, determination of either in another row allows one to fix the
position of the other character in that row.

Example 11.2. Suppose that as the result of an analysis based upon considerations of frequency, we have
assumed the following values in a given cryptogram:

Plain | A|B|c|p|E|F|e|u|1|s|xk|L|u|n]o|r|a|r]|s|T|Uu|Vv|W]|x]|Y]|2z
Cipher 1 G Y v
Cipner 2 N G P
Cipher 3 L B I
Cipher 4 W I Q

Note that the letter G is common to cipher alphabets 1 and 2. In alphabet 2, we note that N occupies the
10th position to the left of G, and the letter P occupies the 5th position to the right of G. We may therefore
place these letters, N and P, in their proper positions in alphabet 1, the letter N being placed 10 letters
before G, and the letter P, 5 letters after G. Thus:

Plain A|B|C|D
Cipher

F|G|H|I|J|K|L|M|N

Cipher
Cipher

= 0 =2 @ m
H oW Q@ <O

s oW N e
o0 H Yo

Cipher
Using the same G, we can also map Y and V into alphabet 2:

Plain A | B C|D

Cipher
Cipher
Cipher

s W N e
<

= 0 = @ m

H W O |

F= R S
)

Cipher
Similarly, we can use symmetry of position to compare alphabets 3 and 4:

Plain A|B|C|D
Cipher

F|G|H]|I J|K|L | M|N

Cipher
W
B

Cipher

s w N -
<

= 0 =2 @lm

H oW @ ~<| 0O

0 H YU ao<s|H

Cipher L

Use the new information to fill in more parts of the plaintext, and try to guess at new words. Then, go back
to the table and use symmetry of position, etc.
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11.2 Coherent Running Key Ciphers

Observation: the longer the Vigenere key, the safer the cipher.

Use a running key, text taken from a readily available book or other coherent text (eg. Declaration of
Independence). Use the running key in the same way as Vigenére (each key letter specifies a Caesar cipher).

Example 11.3.

plaintext: thism ateri alise nciph ered
key: ONANO NINTE RFERI NGBAS ISOV
ciphertext: HUIFA NBRKM RQMJM AIJPZ MJSYX

To encrypt t in “this:” t+ 0 =19+14 =33 =7 (mod 26) = H

Analysis

1. The coherent running key has a letter frequency similar to that of the plaintext. Thus, plaintext/key
combinations like i/E, e/T, e/E, etc. are common, and common letters of ciphertext may represent such
combinations (eg. cipher character M in the previous example). If we can successfully guess enough
letters in the key, we may be able to recognize the entire key (coherent text).

2. (Bazeries-Friedman solution) Use a probable plaintext word and subtract it from the ciphertext to see
if a meaningful key results. Try completing unfinished words in the key.

Coherent running-key cipher is certainly harder to break than Vigenere and Mixed Vigeneére, but is never-
theless insecure.

What happens if we do multiple levels of encryption (2 or more coherent running keys)? It has been proven
that using 4 separate and distinct coherent running keys will (statistically) result in a secure cipher.

What do we mean by “secure?” Information Theory provides mechanisms to evaluate statistical security.
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Lecture 12

Entropy

Information theory measures the amount of information in a message by the average number of bits needed
to encode all possible messages in an optimal prefix-free encoding. Here, optimal means the average number
of bits is as small as possible.

Example 12.1. The four messages
UP, DOWN, LEFT, RIGHT

could be encoded in the following ways:

String Character Numeric Binary
“UP” “U” 1 00
“DOWN” “D')’ 2 01
“LEFT” “L” 3 10
“RIGHT” “R” 4 11

(40 bits) (8 bits) (16 bits) (2 bits)
(5 char string) | 8-bit ASCII | (2 byte integer) | 2 bits

All encodings carry the same information (which we will be able to measure), but some are more efficient
(in terms of the number of bits required) than others. Huffmann encoding can be used to improve on this if
the directions occur with different probabilities.

The amount of information in a message is formally measured by the entropy of the message. The entropy
is a function of the probability distribution over the set of possible messages.

Definition 12.1. Let {X;, Xs,...,X,} be a set of n possible messages occurring with probabilities

p(X1),p(X2),...,p(X,) where Zp(X

(i.e., the p(X;) form a probability distribution). The entropy of a discrete random variable X (X can be any
of the X;) is defined by the weighted average

= ) px i)log, —r5 - ) p(Xi)log, p(X;) -
=1 =1

p(Xi)#0 p(X;)#0
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Example 12.2. Suppose n > 1. Then

0<pXi)<1l (i=1,2,...,n)
1
p(X3)

1
log, ——— > 0,
82 p(Xi)

hence H(X) > 0if n > 1. If there are at least 2 messages, then receiving either of them conveys information.
Example 12.3. Suppose n = 1. Then

1 1
Xi)=1, —— =1, logy—— =0 = H(X)=0 .
PO =L ey = B ) )

If there is only one possible message, no new information is gained upon receiving it.
Example 12.4. Suppose there are two possible messages which are equally likely:
1
p(male) = p(female) = 2
1 1
H(X)= 510g22+ 510g22 =1.
Receiving either message conveys exactly 1 bit of information (male or female).

Example 12.5. Suppose we have

1 1 1 1
p(UP) =3, p(DOWN)=7, p(LEFT)=g, p(RIGHT)= g .
Then
1 1 1 1
H(X)= §log22+zlog24+ glog28+ glog28
_1,2 3.3
2 4 8 8
14 7
=3 =1 =1.75 .

An optimal encoding is
UP=0, DOWN =10, LEFT =110, RIGHT =111 .

Because UP is more probable than the other messages, receiving UP conveys less information than receiving
one of the other messages. The average amount of information received is 1.75 bits.

Intuitively, log,(1/p(X)) represents the number of bits needed to encode X in an optimal encoding. The
weighted average H(X) gives the average number of bits per character in an optimally encoded message.

Example 12.6. Suppose we have n messages which are equally likely: p(X;) = 1/n.

n

1
H(X) :Zﬁlog2n=10g2n .
i=1

If n = 2% then H(X) = k. In other words, if all messages are equally likely, then H(X) = log, n.
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Rate and Redundancy

Theorem 13.1. Given n, H(X) is mazimized for p(X;) = 1/n for i = 1 < i < n. Furthermore, H(X)
decreases as the distribution of messages becomes increasingly skewed, reaching a minimum whenn =1 =
H(X)=0.

Idea of proof: (This is not a complete proof! The full proof uses induction on n)

Suppose p(X1) > 1/n, p(X2) < 1/n, and p(X;) is fixed for i > 2. Set p = p(X1), then p(X2) =1—-p—e€ and

H=—-plogp—(1—p—c)logl—p—¢€)+k
H
Z—p:—logp—l—klog(l—p—e)%—l

p

l1-p—c¢ .
=logT<0 since 0 <p<1

Thus, H decreases as a function of p as p increases. Prove that H is maximized when p = 1/n by induction
on n (A2 question!) QED

Rate and Redundancy

Definition 13.1. For a given language, let X be the set of all messages N characters long. The rate of the
language for messages of length N is defined to be

HX) avg. info
N number of chars’

r =

that is, the average number of bits of information in each character.

Example 13.1. In English, for large N
1<r<15.

Definition 13.2. The absolute rate of a language is defined to be the maximum number of bits of information
that could be encoded in each character, assuming that all possible sequences of characters are equally likely.
If there are L characters in the language, then the absolute rate is given by

R =log, L,

the maximum entropy of individual characters.
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Example 13.2. In English, R = log, 26 ~ 4.7 bits/character.

Note that the actual rate of English (1.5) is much less than the absolute rate (English is highly redundant).

Definition 13.3. The redundancy of a language with rate r and absolute rate R is defined by

D=R-r (x~4.7-1.5=3.2 for English.

Redundancy is more commonly used in the form

R_T—l_i
R R’

D/R =
By this measure, English has redundancy

0.68 < D/R < 0.79,

i.e., English is between 68% and 79% redundant.
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Equivocation and Perfect Security

The uncertainty of messages may be reduced when we have additional information (side information). For
example, let X be a 32 bit integer, with all values equally likely; then H(X) = 32. But if we know that X
is even, then the entropy is reduced by one bit (H(X) = 31) because the low order bit of X must be 0.

Given a message Y in the set Y1,Y5,...,Y,, where > | p(Y;) = 1, let p(X | Y') be the conditional probability
of a message X, given Y (the messages Y; are the side information). Let p(X,Y) be the joint probability of
message X and message Y. Then

p(X,Y) =p(X | Y)p(Y) .
Definition 14.1. The equivocation is the conditional entropy of X given Y :

H(X |Y)==) p(X,Y)log,p(X | )
XY

1
= ;p(Y);p(X | Y)log, m .

Example 14.1. n = 4, p(X;) = 1/4 (all four messages are equally likely). Thus, H(X) = 2. Similarly, let
m = 4, p(Y;) = 1/4 for each message Y;. Now, suppose that each message Y; narrows the choice of X to two
of the four possibilities are shown:

Yi X1 or X2
1/2 X3 or X4
1/3 X2 or X3
Yy XjorX;

Then for each Y;, p(X; | Y;) = 1/2 for two of the X; and p(X; | ¥;) = 0 for the other two X;. Thus

H(X|Y):4<i-2(%log22)) =1.

Thus, there is only one bit of uncertainty in X, given Y.

Example 14.2. Consider X to be the result of throwing a fair die (i.e., all results are equally probable,
p(X) =1/6 and H(X) = log, 6). Suppose

)1 if X is odd
)0 if X is even.

37
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Then H(Y)=1and p(X | Y) =0or 1/3. What is H(X | Y)?

HOE|Y) = 5200 00X | Vo x5
-1 (p(z | 0)log, p—(21| G+ 0)log, s 41| 5 + (61 0)log, rsﬂ 0))
1 1 1 1
+ 5 (p(]- | 1) 10g2 p(l | 1) +p(3 | 1) 10g2 p(3 | 1) +p(5 | 1) 10g2 p(5 | 1))
1 1
=3 (6glog2 3)
= log, 3

Perfect Security

Suppose we have the following;:

1. Plaintext messages M occur with probabilities p(M) and ) ,, p(M) = 1.
2. Ciphertext messages C' appear with probabilities p(C) such that ). p(C) = 1.

3. Keys are selected with prior probabilities p(K) where Y, p(K) = 1.

Let p(M | C) be the probability that the message M was sent, given that the ciphertext C was received.

Definition 14.2. Perfect security is defined by the condition
p(M | C) = p(M),

i.e., the fact that we know the ciphertext gives us no information about M.
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Perfect Security

Consider p(C' | M), the probability of receiving ciphertext C' given that M was sent. We have

p(C|M)= Y pK).
K
Ex (M)=C
That is, p(C | M) is the sum of probabilities p(K) of the keys K that encipher M to C. Usually there is at
most 1 key such that Ex(M) = C for given M and C, but some ciphers can transform the same plaintext
into the same ciphertext with different keys. For example, a monoalphabetic cipher will transfrom a message

into the same ciphertext with different keys if the only differences between the keys occur for characters
which do not appear in the message.

A necessary and sufficient condition for perfect security is
p(C | M)=p(C) forall M,

i.e., the probability of receiving a particular ciphertext C, given that M was sent (enciphered with some key
K) is the same as the probability of receiving C' given that some other message M was sent (enciphered
under another key). Thus, the following are equivalent:

p(M | C) =p(M) <= p(C | M) =p(C) forall M,C

To see this, note the following;:

p(M,C) = p(C, M) joint probabilities
p(M,C) =p(M | C)p(C) identity
p(C, M) = p(M)p(C | M) identity

p(M)p(C | M) =p(M | C)p(C),
but if we have perfect security, by definition p(M) = p(M | C), so those two terms cancel and we have
p(C | M) = p(C)
as claimed.

Example 15.1. Suppose we have 3 messages M1, My, M3 and three ciphertexts C,C>,C3, and all occur
with equal probability (p(M;) = p(M3) = p(M3) = 1/3 and p(Cy) = p(Cs) = p(C3) = 1/3). Also, suppose
that we have perfect security, i.e.,

p(M | C) =p(M)=1/3
p(C| M) =p(C)=1/3 .

This means that C; corresponds to M; with equal probability for all 4, j.
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M1 C1
M2 Cc2
M3 C3

Perfect security requires that the number of random keys must be as great as the number of possible
messages. Otherwise, there would be some message M such that for a given C, no K decrypts C into M,
implying p(M | C) = 0. The cryptanalyst could thereby eliminate certain possible plaintext messages from
consideration, increasing the chances of breaking the cipher.

Theorem 15.1. For a cryptosystem to have perfect security, it is necessary for there to be at least as many
keys as there are messages.

Proof. Let n = | M| (the number of messages). Consider some key K, and S = {Eg, (M) | M € M}. These
elements must all be distinct, so |S| =n. For M; € M, let C; = Ek, (M;), then

p(C;) =p(Cj | M;) >0 .

For any other M;,

p(Cj | M;) =p(Cyj) >0 .
So, pick a particular C;. Then 3K; such that Eg,(M;) = C;. We can’t have K; = K, if i # r, since we would
have one key mapping two messages to the same ciphertext. Hence there are at least n keys. QED

Example 15.2. With an alphabet of size 26, if n is large enough that 26™ > 26!, monoalphabetic substitution
does not have perfect security.
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The One-time Pad (Vernam coding)

Consider the alphabet to be replaced by 5-bit binary equivalents (or ASCII, EBCDIC, or whatever), thus
converting the message to a bitstream. Define (XOR)

and if A = (ay,as,...,a,) and B = (by,ba,...,b,) then
A®B= (a1 ®bi,a3 ®by,...,a, ®by)

(component-wise XOR).

Let M be any n-bit message and K be any n-bit (random) key. Let C be the ciphertext given by C = M ® K.
This cipher is called the one-time pad, and is provably secure as long as the following hold:

1. K must be random
2. K must be as long as M

3. K must be used only once

Suppose K were used twice:

Ci=M oK
Co=My®o K
= C10Cy=M;, & My since K® K =(0,0,...,0) .

Note that C; ® C2 = My & M, is nothing more than a coherent running key cipher (adding two coherent
texts, My and M), which as we have seen is insecure.

The one-time pad is an example of an unconditionally secure cipher. Such ciphers resist all cryptanalytic
attacks. Even if the cryptanalyst tries all possible keys, he finds multiple solutions.

There are disadvantages to such schemes. For example, the one-time pad requires a random key which is
as long as the message, and each key can be used only once. However, one-time schemes are used when
unconditional security is crucial, for example, Moscow-Washington hotline.

The major problem with the one-time pad is the cost. As a result, we generally rely on computationally
secure ciphers. These ciphers would succumb to exhaustive search, because there is a unique “meaningful”
decipherment. The computational difficulty of finding this solution foils the cryptanalyst. Proof of security
does not exist for any proposed computationally secure system.
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16.1 Key Equivocation and Perfect Security

Shannon measured the security of a cipher in terms of the key equivocation H(K | C). That is the amount
of uncertainty about K, given C. If H(K | C) = 0, then there is no uncertainty and the ciphertext can
theoretically be broken, given enough resources. As N, the length of the ciphertext increases, usually
H(K | C) decreases.

Definition 16.1. The unicity distance is the smallest N such that H(K | C) is close to zero; that is, the
amount of ciphertext needed to uniquely determine K.

Note. A cipher is unconditionally secure if H(K | C') never approaches zero, even for large N.
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Unicity Distance

Most ciphers are too complex to determine the probabilities needed to evaluate the unicity distance. It is
possible to approximate it for certain ciphers using a random cipher model (Hellman).

Assume each plaintext and ciphertext comes from a finite alphabet of L symbols. Thus, there are LYY = 28N

(R = log, L is the absolute rate of the language) possible messages of length N. We partition the messages
into two subsets:

1. a set of 2"V = 2H(M) meaningful messages

2. a set of 28N — 2N meaningless messages.

All meaningful messages will be assumed to have the same probability 27"V, while all meaningless messages
have probability 0. We will also assume that we have 27(K) keys, all equally likely, where H(K) is the key
entropy (number of bits in the key). The probability of any given key K is given by p(K) = 2~ H&),

A random cipher is one in which for each key K and ciphertext C, the decipherment Dk (C) is an independent
random variable uniformly distributed over all 2#N messages, both meaningful and not. Intuitively, this
means that for a given K and C, Dg(C) is as likely to produce one plaintext message as it is to produce
any other. (Not totally independent, since Dk (C) # Dk (C") for C # C'.)

Consider the ciphertext C = Ex (M) for given K and M. A spurious key decipherment or false solution
arises whenever encipherment under another key K’ could produce C; that is,

C = Ex:(M)

for the same message or
C = Ex(M")

for another meaningful message M'. A cryptanalyst intercepting one of these ciphertexts would be unable
to break the cipher since there is no way to select the correct key or message. We are not concerned with
decipherments which produce meaningless messages because the cryptanalyst can immediately reject these
solutions.

For every correct solution to a particular cipher, there are 2#(¥) — 1 remaining keys, each of which has the
same probability g of yielding a spurious key decipherment. Because each plaintext message is equally likely,
the probability of getting a meaningful message and, therefore, a false solution is given by

27‘N

9= 5N = 27PN (D is the redundancy).

Let F' denote the expected number of false solutions

F= (2H(K) _ 1) g= (2H(K) _ 1) 9—DN ., 9H(K)-DN
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Because of the rapid decrease in the exponent with increasing N
logoy F~ H(K)— DN =0

is taken as the point where the number of false solutions is sufficiently small that the cipher can be broken.

Thus H(K)
N = 5

approximates the unicity distance — the average amount of text needed to uniquely determine the key (break
the cipher).

Example 17.1. If for a given N, the number of possible keys is at least as large as the number of messages,
then
H(K) > log,(2fY) = RN .

Thus
H(K)— DN >RN—-DN=rN#0

The cipher is theoretically unbreakable (eg. one-time pad).

Example 17.2. Caesar cipher. H(K) = log, 26 ~ 4.7. Unicity distance:

HK) 47 AT
D 47-15 32

N = 1.5 .

Theoretically we only need 1 or 2 characters to break a Caesar cipher — certainly not true in practice.
Difficulties with unicity distance:

e 7 = 1.5 is true for large values of IV, but not necessarily true for small N.

e all messages are not equally likely (as in the random model)

One should regard the unicity distance derived here as a conservative lower bound.

Example 17.3. Digraph substitution. |K| = (262)!, H(K) = log,((26%)!) ~ 5419 (derived by Stirling’s

formula:
n
n! & V2mn (E) .
e

Unicity distance:

H(K) 5419
D 32 ~ 1700

Thus, theoretically we need at least 1700 characters to break a digraphic cipher.
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Transposition Ciphers

A transposition cipher is a rearrangement of the letters in the plaintext according to some specific system
and key (i.e., a permutation of the plaintext). They are generally insecure.

Definition 18.1. Route ciphers usually involve arranging the plaintext into a geometric figure and then
rearranging the plaintext according to some route through the figure

Example 18.1. Plaintext: Now is the time for all good men

System: arrange the plaintext by rows into a rectangle of K columns and extract the ciphertext by the
columns.

For K =5:

O =24 =2
oM@ o
2@ =
HOQOo-H
=2 0 X H W

Ciphertext: NTMAO OHELD WEFLM ITOGE SIRON

Transposition ciphers can be detected by frequency counts — will be the same as for English text.

Definition 18.2. In a columnar transposition, the message is arranged horizontally in a rectangle. The
key is used to generate a permutation of the columns. The ciphertext is read vertically from the permuted
columns.

Example 18.2. key: SCHMID

We use the relative order of the key letters:

SCHMID
613542
plaintext: sell all stock on Monday
6 1 3 5 4 2
S E L L A L
L S T 0 C K
0 NM 0O N D
A Y

ciphertext: ESNYL KDLTM ACNLO OSLOA
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Analysis

Since these ciphers represent permutations of the plaintext, we can detect such a cipher by using the frequency
distribution for the plaintext alphabet. There should be a close correlation.

Example 18.3. Consider the following ciphertext:

EOEYE GTRNP SECEH HETYH SNGND ODDET
OCRAE RAEMH TECSE USIAR WKDRI RNYAC
ANUEY ICNTT CEIET US

Note that this ciphertext has 77 letters. This number usually suggests the dimensions of the rectangle, in
this case 7 x 11 or 11 x 7. However, it could also be, for example, a ragged 8 x 10 rectangle with the last 3
letters missing. To determine the correct number of rows, we look at all possible values. Since the correct
number of rows will result in arranging letters of the same plaintext words in the same row, the ratio of
vowels to consonants per row gives a good indication whether our guess is correct. For example, we expect
in military text 40% of the letters to be vowels.

For our example, 11 rows has the best vowel frequency.

EEGAERC
OCNEUNN
EEDRSYT
YHDATAT
EHDEARC
GEDMRAE
TTEHWNTI
RYTTKTUE
NHOEDET
PSCCRYU
SNRSITIS

Once the text is arranged into the suspected rectangle, we need to determine the order in which the columns
were taken. We select one column and consider the digrams formed by pairing the remaining columns to
its right. For each column, sum the expected frequencies for the digrams formed. The column yielding the
highest sum likely indicates the correct pairing.

Table 18.3 contains the distribution of digraphs based on 50000 letters of government plaintext telegrams
(reduced to 5000 digraphs)

The following table shows the frequencies of the digraphs formed by putting columns 1,2,...,6 to the right
of column 7

1 2 3 4 ) 6 7
E 32|E 32 |/G 0|A 20 E 32|R 4 C
O 18|C 19| N 8| E 57| U T7|N 8 N
E mM|E 71|D 6|R 17| S 19|Y 41 T
Y 41 |H W8|D 6|A 28 I 45| A 28 T
E 32|H 4D 1|E 32| A 20|R 4 C
G 4|E 42D 60| M 14| R 87| A 35 E
T 2v|T 2v|E 13| H O0|W O0|N 75 I
R &8 |Y 4T 37| T 37| K 0|]U 3 E
N 7|/H |0 50| E 71| D 6|E 71 T
p 2|S 12,C 3|]C 3| R 31]Y 0 U
S 19| N 4|R 5| S 19 I 34| 1 34 S

340 381 189 298 281 303

From our analysis is appears that column 2 follows column 7.
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Product Ciphers

Definition 19.1. The product of two ciphers is the result of applying one cipher followed by the other.

Note. The product of two substitution ciphers is a substitution cipher. The product of two transposition
ciphers is a transposition cipher.

Shannon suggested applying two simple ciphers with a fixed mixing transformation in between to diffuse
redundancy into long term statistics, and to confuse the cryptanalyst by making the relation between the
redundancy of the ciphertext C' and the description of the key K very complex.

Definition 19.2 (Confusion). Applying substitutions in order to make the relationship between the key
and ciphertext as complex as possible.

Definition 19.3 (Diffusion). Applying transformations that dissipate the statistical properties of the
plaintext across the ciphertext.

Example 19.1. Hayhanen Cipher — named after the Russian spy caught using it in New York. (50’s —
FBI couldn’t break it!)

Plaintext: feb/4/havecontactedfred.willconsultbeforeinvestingincoverbusiness.nat

1. The Hayhanen cipher begins with substitution according to a keysquare, designed so that some letters
encode to 1 digit and some to 2 digits, but are unambiguous when read. Letters in the first row
(keyword) are represented by only a single number. Letters in the second and third rows (remainder
of plaintext alphabet) use two digits, the one on the left first followed by the one above. Note that the
numbered rows use the numbers that are not used in the first row.

~
Q o o|w
n 0 K|©
£ o r|o
< HhoO|
s 0/ B|O
L = o]
< e p o
N W H|=

=]

ael

Thus, e encodes to 4, and v encodes to 24.

We substitute all the letters according to this keysquare:
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f e b / 4 / h c o n t a c t e

)
<
)

74 4 73 27 444 27 78 5 24 4 79 3 9o 8 5 79 8 4
d £ r e d . W i 1 1 c o n s u 1

76 74 9 4 76 22 20 6 i1 1 79 3 0 29 26 1 8
b e f o r e i n v e s t i n g i n

73 4 74 3 9 4 6 0 24 4 29 8 6 0 70 6 O

c o v e T b u s i n e s s . n a t
79 3 24 4 9 73 26 29 6 0 4 29 29 22 O 5 8

2. The resulting string of digits is written into a transposition block row by row:

S

O P OO NWWNPD NN
N NOD D ONNONBNN
O WO P NNNOOWN PO
N NNNPDOONO N N
O O WOWWOWWNO® P OO WIN
NN WOGWOWOEF O U 0N O
N ONDDE R PDNINDNOD
OO PO OO NN O P PP
OO P NO N OO ibhlw

3. The digits are taken out of the block by columns (in the order of the key numbers) and written into a
second block using a route cipher. We fill in the area to the left of the line first, then the areas to the
right. The line in block forms a step-like pattern: start to the left of column 1 and step to the right
until the edge is reached, jump to the left of column 2, etc.

B ORNNOKRLWIRNTRSD©C©®O TR D
= NONNNmwgOo®mEe©wh PR
HNWONORNAIOROMD® oD
O ON OI~NO T O NOO DO
N 0O N PWO KON NN WNDNDO
N WO O NN N N O OfWN D OlWw

4. Finally the digits are transcribed by columns into groups of five.

Ciphertext: 66067 49470 79299 74986 49467 42402 53219 42306 27276 25632 47089 64753 40224 94223
22470 49342 18247 48998 07387 77071
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Example 19.2. IBM’s Lucifer system. This system uses permutations (transpositions) on large blocks for
the mixing transformation, and substitution on small blocks for confusion.

Since this system was set up in hardware, they called the chips which did the permutation “P-boxes” and
those that did the substitution “S-boxes.”

P-box S-box
1 0
n n
0 _| 0 2=8 2=8
0 _| |0
0 _| 0 n=3 0 0
0o _| ) . ul 1 1
o
0o _| 0 55 2 B i
T2 =>
0o _ L0 s 3 3 3k
0 T 2409
0 _ 1 g 4 4 L5
p
0 _| 0 S s 5 1%
1 = SE
0 _| 0 o 6 6 2
3 T
0 _| 0 7 7
0 _| 0
0 _| 0
0 _| 0
0 _| 0
The Lucifer system simply consisted of a number of P and S boxes in alternation.
P P P P P P
1] — — M 1
N s [Is[ \ [ Is B S 1
o\ — — = — | L B 0 =3
o—\— — [~ —H\— 1
N N S By O S I |\ 1
0 S s s S s 1
o— \ 1l —1 \1| B ] 1
o— \4 1 — H 0 1
O s k[ Is[ ] s s s 1 .
0o— +— =\ — — 1 1
o— — H—\— —H — 0
O s 1 \[Is[ | /s s s !
o— L 1\ /1 ] B 1
o— — — = /= 1
O [Is[ | [Is[ ] [ s s s 0
o— — H— 1 H 1

n=3
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The Data Encryption Standard (DES)

DES was developed by IBM around 1972. The National Bureau of Standards (NBS — now NIST) made
solicitations to IBM in 1973/1974 concerning the use of this as a public standard, in response to corporate
needs for securing information.

IBM and the National Security Agency (NSA) secretly evaluated DES for security. DES was approved in
1978, and it is still in use. The Advanced Encryption Standard, approved in October 2000, will eventually
replace it.

NBS assumptions for DES:

1. The algorithm is assumed completely known by everyone including adversaries (Shannon).

2. An adversary would have a substantial quantity of matched plaintext and ciphertext using a specific,
unknown key.

NBS requirements for DES:

1. No method of recovering the key was known other than exhaustive search

2. Such a search was not economically possible (computational security)

Description of DES

DES encrypts 64-bit blocks of data (i.e., plaintexts have 64 bits) using 64-bit keys. Note that 8 of the key
bits are parity bits, resulting in 56 actual bits of the key used for security purposes.

1. The 64 plaintext bits are permuted in a fixed order (transposition cipher).
2. The block is divided into two 32-bit words Ly and Ry.

3. The block undergoes 16 substitution “rounds.” In each round, one word is transformed using XOR
and a substitution function, after which the two words are swapped.

4. In the last round, the two words are not swapped.

5. The original permutation is reversed.
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Thus
DESjey(M) = IP7*(S16(S15(. .. (S2(S1(IP(M))))...))) -

Diagram of DES:

INPUT

'

EINITIAL PERMUTATION }

L =Ry Ry=lg @B fRo.K 1)

: E— — K
| | n
(F (- ‘
v v
L5 Rig Ri5=L1a B f(Rig K1g)
K
X *
- \f/~
v
Rig=L15 @B f(Ry5: K 16) LieRis

'

E INVERSE INITIAL PERMUTATION }

'

OUTPUT
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Initial Permutation /P

See FIPS publication. Notation: first bit of the output is the 58th bit of the input.

Substitution Rounds

In round i, the right word R; ; is combined with the ith subkey K; via the function f. The output of f is
XORed with L; ; to form R;. The next left word L; is the previous right word (L; = R; 1).

The Function f

f accepts as input R; (32 bits) and the ith round subkey K; (48 bits). The subkey generation is described
below. The function f works as follows:

1. R; is expanded to the 48 bit R; via the expansion function E, which simply repeats some of the bits
of R; in generating R; (see the FIPS publication for the specification of E).

2. R; is XORed with K; (both are 48 bits long).

3. R; @ K; is broken into 8 6-bit words. Each of these words is replaced by a 4-bit word according to the
8 (different) S-boxes S;,Ss,...,Ss. The result of applying the S-boxes is a 32-bit string.

4. The 32-bit string is permuted according to the fixed permutation P (see the FIPS publication).

R (32 bits)

48 bits K (48 bits)
>?<
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Generation of the Subkeys K;

1.

The key K (56 bits) is permuted according to the fixed permutation “PERMUTED CHOICE 1” (see
FIPS publication) and separated into two 28-bit words Cy and Dy.

2. Each word is rotated either one or two places to the left according to the fixed schedule below, yielding
C:i and D;.
Tteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofleft shifts |1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
3. K, is obtained from C; and D; via “PERMUTED CHOICE 2,” which selects 48 bits from C; and D,
according to a fixed ordering.
4. Steps 2 and 3 are repeated with C; and D; to obtain the remaining 15 subkeys.

Formal Notation and Decryption

K, = KS(n, key) (K, is the nth subkey, K S is the key schedule)
Note:

Lii=R;

Riy1=L;® f(Ri, Kit1) i=0,1,...

Li = Rit1 © f(Ri, Kiy1)
C = IP *(Rig, L16)
IP(C) = (Rus, L1s)
(IP~! is the inverse of the initial permutation function)

Suppose DESke, (M) = C. Denote by

,15

K, =KS(17—i,key), i=1,2,...,16

(the key schedule in reverse order). Now run the DES device on C, using K] instead of K;. We have

IP(C) = (R167L16)7 and thus

Ly = Ryg Ry = Lg
L) = Ry = L R, = L§ @ f(Ry, K})
= Ris = Ri6 @ f(L16, K16)

= Ri6 ® f(R15, K16)
=R ® Ri6 ® Lis
= L5

In fact, by continuing this argument we get

L; = Ri6_; R; = Li6_;

and hence

TP (Ryg, Lyg) = TP~ (Lo, Ro) = M

Decryption of DES is simply running the DES algorithm on C' with the reverse key schedule.

Note. The invertibility of DES is independent of the function f. Regardless of what function is used for f,
decryption of DES works exactly as described above. This works largely because the individual parts of DES
are involutions — functions that are their own inverses (g(g(z)) = )
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Strengths and Weaknesses of DES

Under DES, encryption of 0 (plaintext consisting of 64 zeros) under the key 0 produces:

Plaintext 0000 0000 0000 0000 (in hex)

L1 R1 0000 0000 D8D8 DBBC
L2 R2 D8D8 DBBC E73A EDAF
L16 R16 BBEA O0ODC2 1C20 87FC

Ciphertext 8CA6 4DE9 C1B1 23A7

Error Propagation

Modern desiderata: small modifications in the plaintext should cause a lot of modification in the correspond-
ing ciphertext. In particular, we want that changing one bit of plaintext causes one half of the ciphertext
bits to change on average.

In the following example, the keys are the same and the plaintexts differ only in the last bit:

K =05 P = (10)? C = 3AE7 1695 4DCO0 4E25
K = 0% P = (10)*}(11) C = 17D8 E9C3 74D1 4494

Note that the ciphertexts differ in 34 bits. Statistically, they are as far apart from each other as random
sequences.

Similarly, we want that changing one key bit causes one half of the ciphertext bits to change on average:

K = 0% P = (01)* C = B109 FD80 3EB2 DO5E
K =0%1 P =(01)%* C = 451F 0C33 F24F B8DC

Again, 34 bits differ between the two ciphertexts.

21.1 Cryptanalysis of DES

1. Exhaustive search: There are 256 x 10!7 possible keys. If one key is tested every usec, the complete
search would take 2.2 centuries in the worst case (1.1 centuries on average). Old estimate — RIJNDAEL
encrypts a 128-bit block in less than 0.5 usec.
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2. Parallelism: A search machine consisting of 10° chips each testing one key per usec (total of 10'? keys
per second) would find a key in one day. Electronic Frontier Foundation has built a DES cracker for
$250000 which finds a single DES key in 56 hours (tests 8800 keys per psec). A combination of the
DES cracker and 100000 PC’s on the internet has found a DES key in 22.25 hours (tests 245000 keys

per psec).
3. Time-memory tradeoff (Hellman): Shorten time by using a lot of memory — applies to any brute-force
attack on a cryptosystem.

Fix the following notation:

P = 64-bit plaintext
C' = 64-bit ciphertext
K = 56-bit key

DES :C = Sk (P)

Let Py be a fixed plaintext block, for example, 8 ASCII blanks (this is a chosen-text attack).
Define f(K) = R(Sk(R)), where R is a reducing function which throws away 8 bits.

Start with m starting points SP;,SPs, ..., SP,, selected at random from the key space {0, 1,...,2% —
1}. For 1 <i<mlet X;o = SP;. Compute X; ; = f(X;; 1) for 1<j<t:

SPl :X1’0—>X1’2—>"'—)X17t:EP1
SPy=X30— Xog -+ =3 Xoy = EP

Spm: m,O_)Xm,2_>"'_)Xm,t=EPm

The endpoints EP; = f()(SP;). Discard all the intermediate points and sort
S={(SP,EP) |i=1,2,...,m}

on the end points in ascending order. The steps up to this point amount to a precomputation before
starting the real attack.

Now, suppose someone selects a key K, and the cryptanalyst intercepts Co = Sk (Fo) (i-e., he knows
which ciphertext block Cy corresponds to Py). Let Y1 = R(Co) = f(K). He then checks whether Y; is
one of the endpoints in S (very fast since S is sorted). If Y; = EP;, then either K = X;;_ or EP;
has more than one inverse under f. The cryptanalyst can then check for a false solution by checking
that Co = Sk (FPp) for K = X; ;1 (he needs Fy at this point). If no endpoint is Y; or we have a false
solution, try Y = f(Y;) and compare Y3 to the endpoints. If Y2 = EP; then K = X, ; 5 or we have a
false solution. Continue the process on Y3, etc. until we find K.

Theorem 21.1. (Hellman) If f(i) is a random function and t*m = N = 256, the expected probability of
success by this method is
mt 1

N t’

Here N = 2%6, so if we set t = v/N we get 1/t ~ 10~ (small probability of success). Thus, in order to get an
expected probability of success closer to 1, we compute ¢ ~ 108 tables like S, where for each of these tables
we use a different reducing function R. This yields:

Expected time: tt =12
Expected memory: mt = t? (sincem =t = v/N)
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Analytic Attacks on DES

If a cryptosystem is linear then
C=AP+ BK

where C is the ciphertext, P is the plaintext, K is the key, and A and B are matrices determined by the
system (A and B are public). Note that B may or may not be square. To decrypt:

P=A"YC-BK) .
A cryptanalyst can easily mount a known text attack (P and C known) as follows:
BK =(C — AP
BTBK = BT(C — AP)
K = (B"B)"'BT(C - AP)

Thus, linear cryptosystems are not secure (Hill cipher is a simple example). What about DES?
If DES were linear, we would have the following matrix sizes:

A:64x64, B :64 x 56,
K:56x1, P:64x1, (C:64x1

In DES, the expansion operation F, the permutations, and XOR are all linear. All that is left is the S-boxes
— if they are also linear, then DES is linear (and hence insecure).

If the S-boxes are affine, i.e., y = Gx + h, where
G is a 4 x 6 matrix
h is a 4 x 1 matrix

z is the 6 x 1 input
y is the 4 x 1 output,

then we can find a matrix H such that for DES
C=AP+BK+H
K =(B"B)"'BT(C - AP - H) .
Thus, an affine cipher is as easy to break as a linear cipher using KTA (note A, B, and H are public).

Suppose the DES S-boxes were affine. If we modify only 4 entries in each of them, the resulting S boxes
need no longer be affine, but affine cryptanalysis would nevertheless yield a solution one time in 3870. To
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see this, note that there are 60/64 unmodified entries in each S-box, 8 S-boxes in total, and 16 rounds, so
the probability of running DES without accessing any of the modified S-box entries is

60 8%16 1

(6_4> ~ 3870
Thus, linearity or affineness can be exploited if the cryptosystem is close to being affine or linear. This
technique is called linear cryptanalysis (M. Matusi, EUROCRYPT 1993), and will break DES in time 2*?
(better than exhaustive search), and Matusi actually used this method to become the first person to recover

a DES key in 50 days using twelve workstations. However, this attack is a known text attack and requires
243 matched pairs of plaintext and ciphertext (not very practical in general).

Differential cryptanalysis (Biham and Shamir, Journal of Cryptology, 1991) can also be used to break DES
slightly faster than by brute force (247), but it is a chosen text attack requiring 247 chosen plaintext /ciphertext
pairs.

Large-scale, parallel, brute-force attack is the most practical attack.

22.1 Strengths of DES

1. No S-box is affine

2. No portion of an S-box is affine.

The overall algorithm is not affine.

No S-box is translation invariant (S(z) # S(z + E))

Changing a single input bit to any S-box causes at least two output bits to change.

A

P and E are coupled to guarantee that the four outputs of each S-box are taken to six different S-boxes
at the next round.

7. Rapid error-propagation hinders a key clustering attack (testing a smaller set of similar keys)

22.2 Improving DES

1. Use less structured S-boxes. Less structure —> more confusion.
2. Increase the number of rounds. This will relax the need for structured S-boxes.

3. Introduce the key in a more complex manner than XOR and add other non-linearity besides the
S-boxes.

4. Have PERMUTATED CHOICE 2 mix the C and D registers.
5. Make the key scheduling algorithm non-linear.
6. Increase the key size (128 bits)

Extra security for DES can also be obtained by multiple encryption with different keys:
C = Sk, (Sk, (Sk. (P))),

since Sk, Sk, = Sk, does not seem to occur for DES.
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Modes of Operation for Block Ciphers

Definition 23.1. A block cipher divides the plaintext into blocks (usually of a fixed size) and operates on
(encrypts/decrypts) each block independently. Thus, a particular plaintext block will always be encrypted
into the same ciphertext.

Note. The Caesar cipher (blocks of one character), DES (blocks of 64-bits), and RIJNDAEL (blocks of 128,
192, or 256 bits) are all examples of block ciphers.

A block cipher is a substitution cipher, and it must have a large alphabet to foil frequency analysis. In any
cipher, each bit of ciphertext should be a function involving all bits of the plaintext and key. The cipher
should be designed so that changing a single bit of the plaintext or the key causes 50% of the ciphertext bits
to change on average (error propagation). This is useful in authentication and makes it improbable that an
opponent can make undetected modifications to encrypted data unless he knows the key.

23.1 Cipher Block Chaining (CBC)

CBC is one method of providing greater security to block ciphers. It prevents repeated plaintext blocks from
having the same ciphertext.

We start with an initial random block Cy, which is sent in encrypted form to the intended recipient. Each
plaintext block is then encrypted using

Ci=Ex(P;®Ci—y) i2>1

and decryption is performed using
P =Dk (C;) ® Ci—1

The process of combining P; with C;_; in this manner is called pre-whitening, since it scrambles the message
with random data before encryption.

Features of CBC
1. Repeated plaintext sequences will be encrypted differently in different repetitions.
2. By varying Cj, we encrypt the same message differently.

3. CBC has limited error propagation in decrypting. A modification in decrypting a block propagates
only to the next block.
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Diagram of CBC

C P 2} P
0 1 2 n
C
! C
;’ n-1
SENDER !
|
|
E (C ®P1) E (C1®P2)4>C27J K( n—lEb n)
C C C
1 2 n
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (,,,,,,,,,,,,,,,,,,,,
\ v ; \
RECEIVER P (¢) b (€) i ()
c i
C ! _w C
0 T et
P P P
1 2 n

23.2 Plaintext Block Chaining

Similar to CBC, but has unlimited error propagation.
Send random Py (in encrypted form) to the intended recipient. Then
Ci = Ex(P; ® Pi_1)
P;=Dk(Ci)® Pi-1 .

Features of PBC

1. Repeated groups of plaintext blocks are encrypted the same after a one-block delay. Suppose we have
the following sequence of plaintext blocks

PoP\Py ... Py 1 PiPyy1Piso . ..

and that P, = Pyy1, Po = Ppyo, etc... To encrypt Py we encrypt Py @ P, and to encrypt P41 we
encrypt Py @ Pj41. Since Py and Py, are different, the first block of repeated plaintext is encrypted
differently. However, for P, and Py we encrypt P, & P, and Py & Pj4o, which will result in the
same ciphertext since

Po® P, =Py ® Pryo

(P1 = Pk+1 and P2 = Pk+2).
2. Unlimited error propagation — good set up to protect against the playback threat (unauthorized re-use

of an encrypted message). Simply add data/time authentication field at the end of the message (to
make sure the message was not scrambled during transmission).
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Diagram of PBC

P P Pl ‘ P
0 1 2 | n
i
e b Pn—l
SENDER
E (P ®P1) E (P1®P2) K( n—1® n)
C C C
1 2 n
A \i A
RECEIVER () 0 (%) D ()
"o T ~ P
i
P S P
1 2 n

To avoid the disadvantages of CBC and PBC, we can combine them. Send encrypted Py and Cy (both
random). Then

Ci =Ex(P;®Ci—1 ® P;_4)

P =Dk(Ci)®Ci-1 ® Py .
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Stream Ciphers

Stream ciphers do not treat incoming characters independently. Each character accepted as input is enci-
phered into an output character in a manner which depends on the internal state of the device. After each
character is enciphered, the device changes state according to some rule. Therefore, two occurrences of the
same plaintext character will usually not result in the same ciphertext character.

There are two types of such ciphers, synchronous and self-synchronous stream ciphers.

24.1 Synchronous Stream Ciphers (SSC)

In a SSC, the next state depends only on the previous state and not on the input, so that the progression of
states is independent of the sequence of characters received. The output corresponding to a particular input
depends only on the input and its position in the input sequence, not on the characters enciphered before
or after it.

Note. The one-time pad, in a sense, is an SSC.
Diagram of a SSC
The boolean logic should produce a pseudo-random sequence synchronized by the key.

SENDER RECEIVER

COUNTER COUNTER

Y

K — » BOOLEAN
LOGIC

Y

BOOLEAN | K
LOGIC
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DES as an SSC

Start with a random keystream K Sy sent to the receiver in the clear. Compute KS; = Ex(KS;—1). Then
C; =P, KS;.

K P
|
KS
KS . o
i-1 1~ DES -t
C

Note that we can create an SSC from any block cipher in this fashion, substituting the block cipher for DES
in the above diagram. (Example: Cryptonomicon)

K
P
|
IV KEY STREAM
~ BLOCK ~(+
(INITIAL VECTOR) I CIPHER
C

Problems:

1. No error propagation

2. Loss of one character between sender and receiver destroys synchronization (no memory)

Self-Synchronizing Stream Ciphers

Similar to synchonous stream ciphers, except the counter is replaced by a register containg the previous k
ciphertexts. Limited error propagation, self-synchronizing after an initial start-up period (k steps). Can also
be implemented with a block cipher as above.
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SENDER RECEIVER

Y

K — » BOOLEAN
LOGIC

Y

BOOLEAN | K
LOGIC

Error Propagation

1. A single error in a cipher text block causes the deciphered block to be totally garbled. Error propagation
is necessary in a block system to foil a key clustering attack.

2. A synchronous system entails no error propagation.

3. A self-synchronizing system has limited error propagation (k steps).

24.2 Certified DES Modes

DES was certified by the NSA to be used in three modes:

1. Electronic Codebook Mode (ECB): straightforward block-by-block encryption using DES. Because the
same text produces the same ciphertext, this mode is only recommended for sending isolated blocks of
random or pseudo-random data.

2. CBC (cipher block chaining): Start with a 64-bit random initialization vector (IV), which is sent to
the receiver in ECB form. IV can be used repeatedly as long as the DES key does not change.

3. CFB (cipher feedback): Usually k bits are fed back, where k¥ = 8. IV is at least 48 random bits,
right-justified, padded with 0. Each cryptographic session requires a different IV, by these may be sent
in the clear.

24.3 Authentication

Problem: prevent unauthorized individuals from injecting information in a public channel.

Let Ar be an authentication function. Desired properties:

1. Given K and D, Ak (D) is easy to evaluate.
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2. Ak (D) should be difficult to evaluate without K.

3. Given Ak (D) and D it should be very difficult to find another piece of data D' for which the authen-
tication function is the same (Ag (D) = Ax(D")).

Authentication Modes for DES

1. CBC Authentication (CBCA): Encrypt the message using CBC, throwing away all the cipher blocks
except the last. The three left-most bytes of this block form the message authentication code (MAC,
or hash value). Send the plaintext plus the MAC. The recipient separately encrypts the message, and
compares the left-most three bytes of the last cipher block she obtains with the MAC. If they match,
the message that was sent is authentic.

2. CFB Authentication (CFBA): Same as CBCA, but use CFB for encryption.
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Some Number Theoretic Results

25.1 Linear Diophantine Equations

Solve
ar +by=1 (25.1)

given a,b € Z,b > 0, and ged(a,b) = 1. If ged(a, b) # 1, (25.1) is insoluble. If b < 0, use —b and solve for
($, _y)

Euclidean Algorithm

a=bgo + o go = |a/bl,0<ro<b
b=roq1 +11 q1 = |b/ro],0 <71 <719
To =T1g2 + T2 g2 = |ro/r1],0<ra <m
Tn—3 =Tn—2¢n—1+7Tn-1 rn—1 = ged(a, b)
Tn—2 =Tpn_1qn + Tn rn =0

Repeated division with remainder. Notice that the sequence of remainders (the r;) is strictly decreasing,
and thus the sequence is finite (algorithm terminates).

Theorem 25.1 (Lamé, 1844). n < 5log,,min(a,b) (i.e., Buclidean algorithm is O(logmin(a,b)))

Let A_2 = 0, A_l = ]., B_2 = 1, B_1 =0 and

Ap = qrAp_1 + Ap_s
By = qBr—1 + By_2

for k=0,1,.... We have A,, = a and B,, = b (n from above), and
ApBp_1 — BiLA,_1 = (—l)k_l .
Putting k = n yields

ApBp_ 1 — BrA,_ 1 = (_1)n—1
a(=1)" B4 +b(-1)"4, 1 =1 .
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Thus, a solution of (25.1) is given by
r=(-1)""'B,_1, y=(-1)"4,_; .

Computing z, y in this manner is known as the Extended Euclidean Algorithm.

Consider the linear congruence az = 1 (mod m) given a,m € Z, ged(a,m) = 1 (i.e., finding a=! (mod m)).
We want z such that
mlar—1 = ar—1=ym = az—my=1

(can be solved using Euclidean Algorithm).

Example 25.1. For 412z =1 (mod 317) we obtain z = —10, so = 307 (mod 317) is a solution.

25.2 The Power Algorithm (Binary Exponentiation)

Evaluate o™ (mod m) given a,n,m.

Let n = bo2¥ + 5128~ + .- + br_12 + by, be the binary expansion of n, i.e., bp = 1, b; € {0,1}, 1 < i <k,
k = |logy n|. Given by, ..., by, we can evaluate n efficiently (O(log, n)) using Horner’s Method:

n=2(...(2(2bg + b1) + b2) - - - + bg_1) + bi, .
Define sg = by, si+1 = 28; + bj+1. Then

so = bo

s1 = 2bg + b1

59 = 2(2bo + b1) + by = 2%by + 2by + by

53 = 2(2(2bg + by) + by) + bz = 23bg + 2%b1 + 2Dy + b3

S =n .

Define 19 = a* (mod m) and r; = a®* (mod m). Then rp = a®* = a™ (mod m) and we can compute 7y,
iteratively as follows:

ro =a*® =a (mod m)

r = a®t = a?th = (0%0)2ab = (r9)%a®  (mod m)

Fip1 = @+ = @?% 0 = (0%) 2%+ = (r;)%ab+ (mod m) .
This gives us an O(log, n) algorithm to compute a™ — start with 7o = a and for 1 < ¢ < k compute

{rf mod m  if by =0
Ti+1 =

r?a modm if by =1

Note that there at most 2log, n multiplications, and no operands larger than m?.



Lecture 26

More Number Theoretic Results

26.1 Euler’s ¢ Function

Let m be a positive integer. We define

¢p(m)=|{reZ|0<r <m,ged(r,m) =1} .

¢(m) is the number of integers between 1 and m — 1 which have multiplicative inverses modulo m.

Example 26.1. $(42) = |{1,5,11,13,17,19,23,25,29,31,37,41}| = 12

Let p be a prime. Then
o) =p—1=p"(p—1)
o) =p" -p=p'(p-1)
o) =p" —p" " =p""'p-1) .
Let m be composite.

Theorem 26.1. If gcd(m1,m2) = 1, then ¢(mimsa) = ¢(m1)p(mz2).

Proof. Omitted (uses Chinese Remainder Theorem).

Corollary 26.2. If the prime factorization of m is given by

k
p— (e 73 ;
m =[], pi prime,

i=1

then

k k
om) = T[o0) =[] "= 1) -

Example 26.2. ¢(42) = ¢(2 x 3 x 7) = ¢(2)9(3)o(7) = (1)(2)(6) = 12.

Theorem 26.3 (Euler). If gcd(a,m) =1, then

a®™ =1 (mod m) .

71
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Theorem 26.4 (Fermat). If p is prime, then ¢(p) =p—1 and if p fa

a®'=1 (modp) .
Fermat’s Theorem gives rise to a fast probabilistic primality test using binary exponentiation:

e If a1 =1 (mod N) for a few small primes a /N, then N is probably prime (base a pseudoprime).

e If a1 £ 1 (mod N) for any prime a /N, then N is composite.

Unfortunately, there are composite numbers (called Charmichael numbers) for which a™¥~1 =1 (mod N) for
all primes a. An example is 1729. Thus, this method cannot prove primality.

26.2 Primitive Roots
Definition 26.1. For a prime p, a primitive root modulo p is a number g, 0 < g < p, such that p — 1 is the
smallest positive integer k such that g¥ =1 (mod p).

Note. A primitive root g is alternatively called a generator of the cyclic group of residue classes modulo p.
Generators yield the longest possible cycle of powers modulo p.

Example 26.3. Is a = 3 a generator modulo p = 7? By tabulating the powers of a mod p we get

(sequence repeats). Since 6 is the smallest power of a yielding 1, 3 is a primitive root modulo 7. 5 is also a
primitive root modulo 7. There are no others (e.g. 2 has period 3).

Note. If g is a primitive root and ged(a,p) = 1, then g* = a (mod p) for some i with 0 < i < p — 1.

Theorem 26.5. If p is an odd prime, there are exactly ¢(p — 1) primitive roots of p.

Proof. Omitted. QED

Computing Primitive Roots

Suppose p is a large prime (otherwise exhaustive search is easier). Select any small prime ¢ and calculate
¢‘?=V/" (mod p) for each prime divisor 7; of p— 1. If ¢»=1)/" %1 (mod p) for each r;, then ¢ is a primitive
root of p.

Example 26.4. p =19. Select ¢ =2. p—1=18 =2 x 3% and

2(19-1)/2 = 99 = 18 (mod 19)
2(19-1)/3 = 96 =7 (mod 19) .

Thus, 2 is a primitive root of 19.
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One-way Functions

A function f is said to be a one-way function if:

1. f(x) is easy to evaluate for a given z.
2. Given y = f(z), it is computationally infeasible to find z.

Example 27.1. A secure cryptosystem (computationally infeasible to find the key) provides a one-way
function. Define y = f(z) = E,(P), where Py is a known piece of plaintext. Given Py and y (KTA) it
should not be easy to compute the key z. We could also use f(z) = E,(z).

Example 27.2. Let p be a large prime (= 2'°?7) and g be a primitive root. Define
fl)=9g" (modp), 0<uz flz)<p.

This seems to be a one-way function if p — 1 has at least one large prime divisor. Computing z given f(z)
and g is known as the discrete logarithm problem.

Example 27.3. Consider
f(z) = apz™ + a12™ + azx™ +---+a, (mod p), agZ0 (mod p)

where p is a large prime, n > n; > no..., n is large and k is small — large sparse polynomial to a large
degree. In 1977 the following was suggested:

f(z) = apz™ + ar12™ + ax” + azz + as  (mod p)

where n = 224 — 3, n; = 224 — 17, p ~ 290, a; ~ 10'°. Today we would require a much larger value of p.

One-way functions provide a secure method of computer login. We no longer need to keep the password
dataset in the computer. Instead, keep a table containing

f(Pl)af(P2)77f(Pn)

where P; is a password and f is a one-way function. The user submits his password P, the machine calculates
f(P) and determines whether it is in the stored table.

27.1 Key Distribution

A and B wish to exchange a key for encryption over a public channel in such a way that a tapper cannot
determine the key.
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Solution

Due to Diffie and Hellman (1976) — still used today.

A and B decide to use a large prime p and a primitive root g.

A Public Channel B
Select z1 < p randomly Select z9 < p randomly
y1 = ¢g"* (mod p) Y1 — Y1
Y2 — Y2 Y2 = g** (mod p)
K =y K=y*

Notice that

yvp' = (9")" = g™ = (9")" =yp”  (mod p),
i.e.,, A and B have the same K at the end of the protocol. Use K for the key (e.g. take 128 high order bits).
The tapper has g, p, y1,y2, but since the DLP is (presumably!) difficult he cannot determine z; or 5.
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Public-Key Cryptography

28.1 Omne-way Trapdoor Functions
A function f is said to be a one-way trapdoor function if:

1. f(z) is easy to compute for any .

2. Given y = f(x) it is computationally infeasible to determine z unless certain information used in the
design of f is known. When this special information k is known, there exists a function g which is easy
to compute such that z = g(k,y).

Public-Key Cryptography
A public-key cryptosystem consists of two functions Ex, and Dk, with the following properties:

1. Ek,(M) and Dg,(C) are easy to compute when K, Ky are known.

3. Given K, Eg,, C = Eg, (M) it is computationally infeasible to find M or Ks.

Properties 1,2,3 describe Eg, as a one-way trapdoor function. For a signature system (authentication) we
require:

4. Ex,(Dk,(C)) = C.

Public-key authentication: A computes M AC = Dk, (M) and B verifies Ex, (M AC) = Ek,(Dg,(M)) = M.
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Schematic of a Public-Key Cryptosystem

COMMUNICATION CHANNEL

MESSAGE
SOURCE

TRANSMITTER C=EkM) RECEIVER
ENCRYPTSM WHO DECRYPTS
TOEc1 (M) CUSING Dyo(C)
A Y A
EAVESDROPPER K
i 2
KEY SOURCE
K

Note. In a public-key cryptosystem, it is not necessary for the key channel to be secure.
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The RSA Cryptosystem

Named after Ron Rivest, Adi Shamir, and Len Adelman.
Encryption: C = M* (mod n)

Decryption: M = C?¢ (mod n)

The designer:

1. Selects two distinct large primes p and ¢ (each around 2°'2 & 10'5%)

2. Let n =pq, ¢(n) = (p—1)(¢g — 1)

3. Select at random an integer e such that gcd(e,d(n)) =1 and 1 < e < n (from A4, e shouldn’t be too
smalll).

4. Solves the linear congruence
de=1 (mod ¢(n)) .

5. Keeps d secret and makes n and e public, i.e., the public key K1 = n,e and the private key Ko = d, p,q.

Suppose A wants to send a message M to the designer D. We assume that M is an integer and that M < n.
If M > n, block it into less-than-n size blocks.

1. A computes C = M®¢ (mod n) where 0 < C' < n (e and n are D’s public key — everyone knows them)
2. A transmits C.
3. D computes C¢ (mod n) (d is D’s private key — only D knows d)

Note. Encryption and decryption are done using the power algorithm (fast).

Why does this work? We have
C'=(M®%= M (mod n),

but since d is chosen such that ed =1 (mod ¢(n)) we have ed = k¢(n) + 1 for some k € Z, and
Med = MFIMFL = Ak = M(MP™YE (mod n) .
Euler’s Theorem states that a®(™ =1 (mod n), so we have

C4= MMMk = M) =M (mod n) .

7
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Note. We have assumed that ged(M,n) = 1 in applying Euler’s Theorem. The probability that ged(M,n) # 1
is 1/p + 1/q, i.e., very small. Note that since n = pg and M < n, gcd(M,n) € {1,p,q}, and thus in these
rare cases we would likely find a factor of n.

Note. Security rests on the presumed difficulty of factoring n. The private key d is computed from the
congruence ed = 1 (mod ¢(n)) — anyone who knows ¢(n) can find d easily, but to compute ¢(n) we need
to know p and gq.

It is easy to guarantee that gcd(M,n) = 1 — simply take messages in blocks such that M < p,q.
29.1 Generating Random Primes

To generate a random k-bit prime number:

1. Select a random k-bit number.

[\V]

. Look at the set of numbers r,r + 1,7 +2,...,7 + j (j determined below).
3. Use the Sieve of Eratosthenes (i.e., trial division) to eliminate those r + 4 with small prime factors.

4. Test the smallest remaining number for primality. If it is not prime, try the next one, etc...
Questions:

1. How large should j be to guarantee that we find a prime?
Let m(z) denote the number of primes < z. It is known that 7(z) ~ z/logz. Thus, if y = z + j such
that w(y) = w(x) + 1, then there must be a prime between z and z + j = j = logn.

2. How do we test a number for primality?

Probable primes (using Fermat’s Theorem) are good enough.
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Security of RSA

There is no proof that RSA is secure.

e If n can be factored, then RSA is broken. It is not proven whether factoring is hard.
e If d can be found, it can be used to factor n.

e It is not proven that other methods to compute M given C,e,n do not exist, which do not rely on
factoring. IL.e., it is not known whether breaking RSA is equivalent to factoring n.

Nevertheless, we need to design RSA systems such that n = pg cannot be factored easily.

Features of p and ¢
1. p and ¢ must both be large (2°!? ~ 10'5%, soon to be 2102 x~ 10%°8). This means n ~ 21924 (or 22048),

2. [p—q| > /n

3.p—1,¢q—1,p+1, g+ 1 must all have a large prime factor. There are factoring algorithms which can
exploit these properties.

The best general purpose factoring algorithm currently available (the “number field sieve”) can factor n in
logn < ((logn)'/* (loglog n)*/®)(1+0(1)) - )

operations. Massive parallelism, internet distributed computations, are applicable with this algorithm.

Current factoring record (integer without a special form): RSA-155, a 155-digit RSA modulus was factored
in August 1999 (total time — 20 years on a single 450 MHz PC with 64 MB RAM).

30.1 Iterative Attack

Let Co = C = f(M) (f is the encryption function). Define:
Ci = f(C,_l) .

Stop when C,,, = Cy = M =C\,_1.
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This technique is provable equivalent to factoring n under the assumption of the Extended Riemann Hy-
pothesis.
Let

= 1

s)=) —
’ n:ln

where s = 0 + ti (a complex number). When is {(s) = 07

e Trivial zeros: s = —2n

o Non-trivial zeros: Riemann hypothesis states that if s is a non-trivial root, then o = 1/2.

Over 1.5 billion non-trivial zeros have been found, and for all of them ¢ = 1/2. The Riemann hypothesis has
resisted proof since 1853.

The extended Riemann hypothesis says that

Ly = 3 X

n

has its non-trivial zeros on the same line (o = 1/2), and also remains unproved.

30.2 Summary of RSA

1. It seems to be secure.

2. The key size is “small” (two 310 digit numbers).

w

. No message expansion.

4. Tt can be used as a signature scheme.

Disadvantages:

1. Tt is very slow compared with DES, RIJNDAEL, and other private key cryptosystems.
2. Finding keys is fairly expensive.

3. Security is unproven.

30.3 The El Gamal PKC

It is important to have other public-key cryptosystems (PKC) whose security relies on other hard problems.
RSA relies on factoring. An alternative PKC is due to El Gamal.

B (the designer) chooses a large prime p and a primitive root g mod p, and selects some random z with
0 < z < p. B then evaluates y = g* (mod p) with 0 < y < p and publishes {g,p,y}. His private key is x.

Suppose A wants to send a message M (< p) to B.

1. A selects a random k, 0 < k < p.

2. A computes K = y* (mod p), 0 < K < p.
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3. A sends {Cy,C>} to B where

Ci=g" (modp), 0<Ci<p,

Coy=KM (modp), 0<Cy<p.

To decrypt, B computes
C? =g = () =¢y* =K (mod p)

and solves
Cy=KM (mod p)

for M. Note that z is B’s private key.

81

The security of this system relies on the presumed difficulty of the discrete logarithm problem (no proof of
equivalence). However, it is equivalent to the Diffie-Hellman problem: given g® (mod p) and ¢¥ (mod p),

compute g*¥ (mod p).

Disadvantages:

1. Increased bandwidth — the communication channel must be twice as wide as the message being sent.

2. Twice as much computational work for encrypting and decrypting (as RSA).

3. A new random number, k, must be generated for each message.
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Authentication using PKC

Authentication is usually achieved by means of a signature. A signature is a simple means by which the
recipient of a message can authenticate the identity of the sender. It should have two properties:
1. Only the sender can produce his signature.

2. Anyone should be easily able to verify the validity of the signature.

Note that this is different from a MAC — both sender and receiver can generate MAC’s (eg. using DES).

31.1 Authentication Without Secrecy

A sender wishes to send M and a signature indicating that he produced M. If the sender uses a public-key
cryptosystem which is also a signature system, he can sign his message.

Suppose A is the sender. She has a decryption scheme D4 and an encryption scheme E 4. She creates her

signature by computing
S =Da(M)

and sends (M, A, S). Anyone who receives (M, A, S) can find E4 (because it is public) and verify the message
by computing E4(S) and comparing to M. If the message is authentic, then

EA(S) = Ea(DaA(M)) = M .

This works with RSA because it is a signature system:
S=Ds(M)=M* (mod nyu)
E4(S) = Ba(Da(M)) = (M?)**  (mod n4)
= (M®4)44  (mod n4)
=M.

31.2 Authentication With Secrecy
Problem: A wants to send a secret message M to B. B wants to be sure that A sent M.
Solution: A calculates S = D4(M) (S is the signature). He then uses B’s encryption system to compute

Ep(S,M) = F and sends (F, A) to B.
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B, on receiving (F, A) computes

and then verifies that

31.3 Impersonation

Problem: A sends a message M and signature S = D 4(M) to B. B calculates E4(S) and ensures that this
is M. Could only A send M? Can C send a message to B in such a way that B thinks it came from A?

Yes. C knows E4, so C can select some L and compute E4(L). C then sends (E4(L), L) to B. B assumes
that L is the signature, evaluates E4(L), and accepts E4(L) as the message.

Language redundancy usually foils this attack, since E4(L) will normally not be coherent English text.
However, if A is supposed to be sending random information, this will be a problem.

Solution: A sends (M,D4(f(M))), where f is a one-way function. B computes G = Ea(Da(f(M))) and
f(M), and checks that they are the same. Only A could send M.

Suppose C attemps to impersonate A as above. If C randomly chooses L, computes X = f~1(E4(L)), and
sends (X, L) to B, then he will be successful since B will compute E4(L) and verify that this is equal to

F(X) = f(fH(Ba(L) = Ea(L) -

However, if f is a one-way function, C' cannot find a suitable X, and therefore will not be able to impersonate
A.
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Applications of Authentication

High-Security Login Procedure

To foil eavesdropping, hacking, etc...

Suppose A wishes to login. He computes the following;:
D4 (A, time, date)

where A is A’s identity (e.g. user name) and time and date are used as a date-time stamp to foil the playback
threat (reusing this authentic message at a later date). He then computes

P = Ep (A, Dy(A, time, date))

in isolation from the machine M. P is then sent to the machine M.

The host M, upon receiving P, evaluates
Dy (P) = (A, Da(A, time, date)) .
After using the identity A to look up A’s encryption function, M evaluates
E4(Da(A, time,date)) = (A, time, date) .

The machine can then verify that A is who she says she is, and the inclusion of the date and time spoils the
playback threat.

Unfortunately, this scheme is rather slow and expensive, so it is only used for high-security applications.

Remote Sensing

Examples:

e Monitoring radioactive hot cells in a reactor (to prevent theft)
e Video camera security (avoiding playback threat)

e Verification and compliance with nuclear test ban treaty

Problem: A monitor M, is observing some information produced in a host’s (H) environment.
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M M SENSOR

\i
3rd PARTY

This is done by means of a sensor S placed in H. S produces messages, M, which are examined by the
monitor M,. The monitor and the host don’t trust each other.

Desirable features:

1. All parties should be able to verify the authenticity of any message.
2. No part of any message M can be concealed from the host.

3. No unilateral action on the part of any of the parties should lessen the confidence in the authenticity
of M.

4. No party should be able to forge messages that could be taken as authentic.
To solve this problem, use RSA:

e The monitor produces e,d,n and gives (d,n) to the host and all other legitimate third parties.

e The sensor sends C = M*® (mod n) (only the sensor and monitor know e). Third parties and the host
can authenticate by evaluating M = C?¢ (mod n).

e All parties can read C, but it cannot be modified. The host cannot forge because he doesn’t know e.
In fact, no one can forge a message C' = (M')¢ (mod n) unless he knows e.
One problem: Unfortunately the monitor knows e. This means that H can do whatever he likes, and when
the monitor complains, claim that the monitor has forged messages incriminating H.

Solution: Keep e secret from all parties. This means that the sensor S must produce e, d,n, reveal d and n
to all legitimate parties, but reveal e to no one.

S must be capable of producing random information which cannot be inferred by anyone (including the
monitor). One possible source of randomness: put a small quantity of radioactive material in S and let S
count the number of radioactive “ticks.”

e Start at time ¢.
e Count at time ¢; (mod2) gives one bit of the key.
e Count at time ¢t (mod2) gives second bit of the key.

e etc...
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Other Applications of Public-Key
Cryptography

33.1 Secret Sharing

A (k,n) threshold scheme is defined as follows. We divide a piece of information n into n pieces D1, Da, ..., D,
such that:

1. Knowledge of any k or more pieces D; allows one to compute D easily.

2. Knowledge of fewer than k pieces leaves D undetermined, with all possibilities for D equally likely.

Applications: bank vault key, nuclear launch codes

Constructing a (k,n) Threshold Scheme
We select a large prime p > n and p > D, which may be made public. Select at random a set of integers
ai,as,...,ag_1 such that 0 < a; < p, which are kept secret. Let ar = D.

Evaluate the polynomial
f(@) =a1z"' +az* 2 +---+ar (mod p)

for x =1,2,...,n. Set D; = f() (mod p),i=1,2,...,n. As usual, take D; such that 0 < D; < p. We now
have the n pieces Dy, D>, ..., D, that we require.

Given any k of the D;’s we obtain k linear equations in k¥ unknowns (the a;), from which we can find ay.
Alternatively, we can solve for f(0) = ar = D using Lagrange interpolation.

Lagrange interpolation works as follows. Given k points (z1,y1), (z2,¥2),-- -, (Tk,Yk), We can compute a
degree k — 1 polynomial f(z) such that y; = f(x;) using

where
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Notice that for each z;, 1 < j <k

0 ifi#j
L"(x"):{1 ifi=j

which implies that f(z;) = y;.
In our case, we need D = f(0) = Zle L;(0)y; (mod p). To find L;(0) (mod p) solve the linear congruence
(.’L'z' — 271)(.’[51 — .Z'Q) e (.’L'z - .1'1;1)(27,' - :l]'z'+1) e (.’L’z - Z'k)LZ(O)
= (—z1)(—22) - - (—2i—1)(—ziy)) ... (—2x) (mod p) .

Thus, using Lagrange interpolation we can compute D given k or more of the D;’s.

33.2 The Oblivious Transfer Problem

Problem: A and B wish to generate a random bit in such a way that both parties are confident that the
other side has not cheated.

We start with a number n = pg, where p and g are large primes with p,¢ = 3 (mod 4). The protocol is based

on the fact that the congruence x> = a (mod n) has 4 possible solutions in this case. To compute these

solutions we proceed as follows. We have

> =a (mod p)
(22)P=D/2 = g(r=1)/2  (mod p)
2P~ = a1/ (mod p)
1=a*"Y2 (modp) .

Let z = a(Pt1)/4 Then
22 =aPtV/2 = gP-V/2 =g (mod p),

ie, z = +£a®1/* are the two square roots of a mod p. Similarly, +a?t1/4 are the two square roots of
a mod g. We combine these results to compute the solutions of z? = a (mod n).

Example 33.1. Let n =33, p =3, ¢ = 11. Solve 2> = 31 (mod 33).

We compute z modulo p and ¢q. From 22 = 31 =1 (mod 3) we obtain
z=10t/4 = 41 (mod 3)
and from 22 = 31 =9 (mod 11) we obtain
¢ =904/t = 43 (mod 11) .
We pick one value modulo 3 and another modulo 11. Choosing 1 and 3 yields
r=14+3u=3+1lv = 3u—-1lv=2 .
The four possible choices of z mod 3 and 11 yield the four solutions mod33 :

x =8,14,19,25 .
Bit commitment protocol:

1. A selects at random two large primes p and ¢q. He computes n = pqg and sends n to B (keeping p and ¢
secret).
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2. B selects at random z with 0 < x < n, computes y = 22 (mod n) with 0 < y < n, and sends y to A.

3. A computes z such that 22 = y (mod n) (as above) and sends z to B. Note that A computes one of
the four possible values of z.
4. B calculates 22 — 22 and determines the bit as follows.
e Suppose £ = #z. Then 22 = 22 (mod n) = n|z? — 22
z = z, B can factor n and the bit is 1.

and ged(n,z + z) = p or q. Thus, if
e Suppose ¢ # +z. Then z? — 22 = 0 and B cannot factor n. The bit is set to 0.

A computes z = +x with probability 1/2, so the bit sent is random. B confirms the value of the bit sent by
sending = to A. A confirms that both z and z are square roots of n.
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Problems and Complexity

Example problems
1. M : given a € Z and b € Z find ab (multiplication problem)
2. F : given ¢ € Z find a,b > 1 such that ab = ¢ (factoring problem)
3. K :given ay,as,...,ax, a; € Z, find z1,xs,..., 2k, x; € {0,1} such that for a given S € Z
S=AX

where A = (a,as,...,ax) and X = (z1,s,...,x1) (knapsack problem)

Definitions
An instance of a problem is obtained when particular values of all problem parameters are specified. E.g.,
for K the parameters are S, A, k.

The size of a problem instance is the amount of input data needed to describe that instance. E.g., the
number of bits of input to a computer.

The total number of symbols needed in this description is called the input length n of the problem. E.g., for
F, n = [log, C]. For K, n = [log, S| + [log, k] + Zle [log, a;]-

Notation

f(z) and g(z) are functions.

We say that f(z) = O(g(x)) if there exists some constant ¢ such that

|f ()] < clg(z)]

for sufficiently large .

Example 34.1. Time complexity of M (multiply a and b): Suppose we use a computer with fixed binary
word length W and that a consists of r words and b consists of s words. Then n = rw + sw (input length)
and the amount of time required to find C is rwsw < kn?. Thus, the time complexity of M is O(n?).

Note that the best result is O(nlognloglogn).
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As a matter of convenience we deal with decision problems — problems which have only one of two possible
answers, “YES” or “NO.”

Example 34.2. To convert M to a decision problem we could ask: Is the product of a and b greater than
a preassigned number B?

F : given ¢, B does there exist a such that a|c and a > B?

K : does there exist some binary vector X such that given S and A, S = AX?
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NP-completeness

Definition 35.1. A deterministic algorithm when applied to a decision problem II halts in every instance
of II with an answer “YES” or “NO.”

We say that a problem IT € P when it can be solved by a deterministic algorithm of time complexity O(n°)
where ¢ is an absolute constant (i.e., independent of n). Such problems are said to be tractable.

Example 35.1. M € P.

Definition 35.2. A non-deterministic algorithm solves a decision problem IT if the following two properties
hold for all instances of I :

1. If the answer to the instance I is “YES,” there exists some structure S such that when guessed for
input I, it will lead the checking stage to respond “YES” for I and S.

2. If the answer to I is “NO,” there does not exist any structure S that, when guessed for input I, will
lead the checking stage to respond “YES” for I.

A polynomial-time non-deterministic algorithm:

e solves a problem IT if there exists a polynomial p such that for every instance which has answer “YES”
there is some guess S that leads the deterministic checking stage to respond “YES” for I and S within
time p(n), when n is the input length of I.

NP — class of all decision problems that can be solved by polynomial time non-deterministic algorithms.
Clearly P € NP. Also F € NP and K € NP.

Co — N'P — class of all problems whose complements can be solved by polynomial-time non-deterministic
algorithms.

Probably K ¢ Co— NP, F € Co— NP.
Short verification for answer “YES” — NP

Short verification for answer “NO” — Co — NP
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®)

Theorem 35.1. There exists a subclass N'PC of problems in NP such that if 11 € N'PC and II can be shown
to be in P, then all of the problems in N'P are in P. That is, NP = P. These are called the N'P-complete
problems. They are the hardest problems in NP. E.g., K € NPC.
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Summary of Complexity Theory

What we don’t know

Question Consensus
NP =P? No
Co— NP =NP? No

P=Co—NPNNP? Probably not

Eg. FENP and F € Co—NP.

What we know
Theorem 36.1. IfT1 € NPC and 1 € Co — NP, then NP = Co — N'P.

This implies that F' ¢ N'PC (assuming Co — NP # NP).

Theorem 36.2. If P # NP, there exists a non-empty subclass N'PL of NP such that if Il € N'PZL, then
II &P and I € N'PC. Such a problem is called an N'P-intermediate problem.

Theorem 36.3. If Il € NP, there exists a polynomial p such that II can be solved by a deterministic
algorithm of time complexity O(2P(™),
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It appears to be a good idea to base a cryptosystem on problems that are “hard” in the sense described
above. However, there are difficulties:

1. Complexity theory deals with the worst possible case of any problem. It could be that only one or a
few instances of a problem are truly intractable. A cryptosystem based on such a problem would only
occasionally be secure.

2. Complexity theorists assume that only a certain amount of information is available for the solution of a
particular instance of a problem. Cryptanalysts frequently have a great deal more information at their
disposal, such as corresponding plaintext and ciphertext. The existence of such extra side information
is not taken into account in analyzing the complexity of problems.

3. Given any particular difficult problem, it is not always easy to convert it into a cryptosystem.
What are really needed are new measures of complexity especially tailored to the problem of cryptanaly-

sis. When we can certify the security of cryptosystems according to such measures, the problem of secure
communications will be solved.



