PMAT 329 - Quiz 2 - Fall 2004

October 20, 2004

Name:_____

Please DO NOT write your ID number on this page.

- **Duration:** 50 minutes
- Total points: 50
- Show all your work.
- **No aids allowed** except calculators.
- The following information may come in handy:

Α	B	С	D	Ε	F	G	Η	Ι	J	K	L	Μ
0	1	2	3	4	5	6	7	8	9	10	11	12
Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Y	Ζ
13	14	15	16	17	18	19	20	21	22	23	24	25

 $S_2 = \begin{cases} 0.0661 \text{ for English text} \\ 0.0385 \text{ for random text} \end{cases}$

a. [2 points] Define the term *equivocation*.

b. [2 points] What is the *absolute rate R* of a language with *L* characters

c. [2 points] What is the principle of *symmetry of position* used for

d. [2 points] Define what it means for a cryptosystem to provide *perfect secrecy*. (Give the *definition* only.)

e. [2 points] Name at least one cryptosystem that provides perfect secrecy (assuming each key is used with equal likelihood).

2. [8 points] Is the following ciphertext monoalphabetically encrypted? Justify your answer.

DUPOZ PQPTQ OUFSS TJUJB ZBJTL

- 3. For each method of encryption, decrypt the given ciphertext using the given key:
- a. [4 points] Coherent Running Key Cipher, Ciphertext = VIZDZGZ, Key = the text of this question (i.e. "for each method of encryption,....")..

b. [2 points] One time pad, Ciphertext = 110101, Key = 110001.

4. [10 points] Suppose that I guessed that the keyword used for encrypting a Vigenère ciphertext has length 10. The following table gives the value of ϕ for each the 10 subtexts:

Subtext	1	2	3	4	5	6	7	8	9	10
Subtext length	62	62	62	62	62	62	61	61	61	61
ϕ	314	340	214	224	280	210	270	256	291	214

Decide whether my guess is correct. Show your computations and explain your reasoning.

5. (a) [2 points] Given a set of *n* outcomes $X = \{X_1, X_2, ..., X_n\}$ where X_i has probability $P(X_i)$ for $1 \le i \le n$, define the *entropy* H(X) of *X*.

(b) [4 points] Suppose we have the following set of messages and their associated probabilities of being sent:

Message	Sell	Виу	Buy	Buy internet	Buy IBM	Sell tech
	all stocks	Mutual funds	gold	stocks	stocks	funds
Probability	1/16	1/4	1/8	1/16	1/4	1/4

Compute the entropy of this set of messages.

(c) Let n = 2 and suppose that $p(X_1) = p$ and $p(X_2) = 1 - p$. i. [1 point] Write down H(X) as a function of p.

ii.[1 point] What is the value of H(X) for p = 1/2 (i.e. when X_1 and X_2 occur with equal probabilities)?

iii. [8 points] Prove that H(X) is maximal if and only if p = 1/2.

(part (c) continued)