October 20, 2004

Name: \qquad

Please DO NOT write your ID number on this page.

- Duration: 50 minutes
- Total points: 50
- Show all your work.
- No aids allowed except calculators.
- The following information may come in handy:

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}
0	1	2	3	4	5	6	7	8	9	10	11	12
\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
13	14	15	16	17	18	19	20	21	22	23	24	25

$S_{2}=\left\{\begin{array}{l}0.0661 \text { for English text } \\ 0.0385 \text { for random text }\end{array}\right.$

ID number:
\qquad
1.
a. [2 points] Define the term equivocation.
b. [2 points] What is the absolute rate R of a language with L characters
c. [2 points] What is the principle of symmetry of position used for
d. [2 points] Define what it means for a cryptosystem to provide perfect secrecy. (Give the definition only.)
e. [2 points] Name at least one cryptosystem that provides perfect secrecy (assuming each key is used with equal likelihood).
2. [8 points] Is the following ciphertext monoalphabetically encrypted? Justify your answer.

DUPOZ PQPTQ OUFSS TJUJB ZBJTL
3. For each method of encryption, decrypt the given ciphertext using the given key:
a. [4 points] Coherent Running Key Cipher, Ciphertext = VIZDZGZ, Key = the text of this question (i.e. "for each method of encryption,.....")..
b. [2 points] One time pad, Ciphertext = 110101, Key = 110001.
4. [10 points] Suppose that I guessed that the keyword used for encrypting a Vigenère ciphertext has length 10. The following table gives the value of ϕ for each the 10 subtexts:

Subtext	1	2	3	4	5	6	7	8	9	10
Subtext length	62	62	62	62	62	62	61	61	61	61
ϕ	314	340	214	224	280	210	270	256	291	214

Decide whether my guess is correct. Show your computations and explain your reasoning.

ID number:
5. (a) [2 points] Given a set of n outcomes $X=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ where X_{i} has probability $P\left(X_{i}\right)$ for $1 \leq i \leq n$, define the entropy $H(X)$ of X.
(b) [4 points] Suppose we have the following set of messages and their associated probabilities of being sent:

Message	Sell all stocks	Buy Mutual funds	Buy gold	Buy internet stocks	Buy IBM stocks	Sell tech funds
Probability	$1 / 16$	$1 / 4$	$1 / 8$	$1 / 16$	$1 / 4$	$1 / 4$

Compute the entropy of this set of messages.
(c) Let $n=2$ and suppose that $p\left(X_{1}\right)=p$ and $p\left(X_{2}\right)=1-p$.
i. [1 point] Write down $H(X)$ as a function of p.
ii.[1 point] What is the value of $H(X)$ for $p=1 / 2$ (i.e. when X_{1} and X_{2} occur with equal probabilities)?
iii. [8 points] Prove that $H(X)$ is maximal if and only if $p=1 / 2$.

ID number:
(part (c) continued)

