PMAT 329 Introduction to Cryptography ASSIGNMENT 3

Set: Monday, Nov. 22, 2004
Due: Monday, Dec. 6, 2004
Total: 60 points

1. Consider the RSA encryption scheme with public keys $\mathrm{n}=55$ and $\mathrm{e}=7$.
(a) [4 points] Encipher the plaintext $M=19$. Use the binary exponentiation algorithm and show your work.
(b) [4 points] Break the cipher by finding p, q, and d.
(c) [4 points] Decipher the ciphertext $\mathrm{C}=35$. Use the binary exponentiation algorithm and show your work.
2. [6 points] It is obvious that if one can factor an RSA modulus $n=p q$, i.e. one knows the prime factors p, q of n, then one can compute $\phi(n)=(p-1)(q-1)$. Prove the converse, i.e. if both n and $\phi(n)$ are known, then p and q can be found without factoring n.
3. This problem describes a "difference of squares" attack on RSA. Suppose two RSA primes p and $\mathrm{q}(\mathrm{q}>\mathrm{p})$ are very close to one another, i.e. $q=p+\delta$ where $\delta \in \mathbb{N}$ is small (i.e. small enough that it is feasible to try all possible values $1,2,3, \ldots$ for δ; for example, we could have $\delta \approx \log p$). Note that in this case, $p+q$ is only slightly larger than \sqrt{n}.
(a) [5 points] Using the identity

$$
\left(\frac{q+p}{2}\right)^{2}=n-\left(\frac{q-p}{2}\right)^{2}
$$

describe an algorithm to recover $p+q$.
(b) [3 points] Using the technique of part (a), describe a way to recover p and q efficiently without factoring n.
(c) [2 points] Explain why $n=23614161161$ is a particularly bad choice as an RSA modulus (apart from the fact that it's too small to guarantee a decent level of security).
4. After the discovery of RSA, several writers suggested using it with a small encryption exponent e (for example, $e=2,3$). Show why using such a small exponent is insecure in the following scenarios:
(a) [8 points] Two people send the same message M to two different receivers. A different modulus is used for each transmission, but $e=2$ for both.
(b) [8 points] Two different messages which differ by only a few characters (the adversary can deduce the position of these characters) are sent under the same key. Here, $e=2$ and n is the same for both messages.

Hint: The adversary does not have to do any factoring in either case.
5. [10 points] Rabin's public-key encryption scheme enciphers a message M as

$$
C \equiv M(M+b)(\bmod n), \quad(0 \leq C<n)
$$

where b and n are public and $n=p q$ for secret primes p and q. Give a deciphering algorithm for the case where $p+1$ and $q+1$ are divisible by 4 .

Hint 1 : Compute d such that $2 d \equiv b(\bmod n)$. Then

$$
C+d^{2} \equiv(M+d)^{2}(\bmod n)
$$

Hint 2: If $x^{2} \equiv a(\bmod p)$ and p is a prime such that $p \equiv 1(\bmod 4)$, then

$$
x \equiv \pm a^{(p+1) / 4}(\bmod p)
$$

are the two square roots of $a \bmod p$ (prove this).
6. [6 points] Let $n=p q$ for distinct primes p and q. Given $a, 0<a<n$, let x and $y, 0<x, y<n$, be square roots of a modulo n, so

$$
x^{2} \equiv a(\bmod n) \quad \text { and } y^{2} \equiv a(\bmod n)
$$

Show that $\operatorname{gcd}(x+y, n)=p$ or q if $\mathrm{y} \neq x$ and $y \neq n-x$, i.e., finding such x and y allows one to factor n.

