Finite Fields in RIJNDAEL

Operations on Bytes. Consider a byte $b=\left(b_{7}, b_{6}, \ldots, b_{1}, b_{0}\right)$ (an 8 -bit vector) as a polynomial with coefficients in $\{0,1\}$:

$$
b \mapsto b(x)=b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0} .
$$

RIJNDAEL makes use of the following operations on bytes, interpreting them as polynomials:
(1) Addition: polynomial addition by taking XOR of coefficients.

$$
\begin{array}{ccccccc}
& b_{7} x^{7} & + & b_{6} x^{6} & +\cdots+ & b_{1} x & + \\
+ & c_{7} x^{7} & + & c_{6} x^{6} & +\cdots+ & c_{1} x & + \\
+ & \left(b_{7} \oplus c_{7}\right) x^{7} & + & \left(b_{6} \oplus c_{6}\right) x^{6} & +\cdots+ & \left(b_{1} \oplus c_{1}\right) x & + \\
\hline
\end{array}
$$

The sum of two polynomials taken in this manner yields another polynomial of degree 7. In other words, component-wise XOR of bytes is identified with this addition operation on polynomials.
(2) Multiplication: polynomial multiplication (coefficients are in $\{0,1\}$) modulo $m(x)=x^{8}+x^{4}+x^{3}+$ $x+1$ (remainder when dividing by $m(x)$ - analogous to modulo arithmetic with integers). The remainder when dividing by a degree 8 polynomial will have degree ≤ 7. Thus, the "product" of two bytes is associated with the product of their polynomial equivalents modulo $m(x)$.
(3) Inverse: $b(x)^{-1}$, the inverse of $b(x)=b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0}$, is the degree 7 polynomial with coefficients in $\{0,1\}$ such that

$$
b(x) b(x)^{-1} \equiv 1 \quad(\bmod m(x))
$$

Note that this is completely analogous to the case of integer arithmetic modulo n. In this case the "inverse" of the byte $b=\left(b_{7}, b_{6}, \ldots, b_{1}, b_{0}\right)$ is the byte associated with the inverse of $b(x)=$ $b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0}$.

By associating bytes with polynomials, we obtain the above three operations on bytes. RIJNDAEL uses inverse as above in the ByteSub operation.
$G F\left(2^{8}\right)$ is the set of 256 bytes viewed as polynomials, together with the operations described above.

4-byte Vectors. In the MixColumn operation of RIJNDAEL, 4-byte vectors are considered as degree 3 polynomials with coefficients in $G F\left(2^{8}\right)$. That is, the 4 -byte vector ($a_{3}, a_{2}, a_{1}, a_{0}$) is associated with the polynomial

$$
a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

where each coefficient is a byte viewed as an element of $G F\left(2^{8}\right)$ (addition, multiplication, and inversion of the coefficients is performed as described above). We have the following operations on these polynomials:
(1) addition: component-wise "addition" of coefficients (addition as described above)
(2) multiplication: polynomial multiplication (addition and multiplication of coefficients as described above) modulo $M(x)=x^{4}+1$. Result is a degree 3 polynomial with coefficients in $G F\left(2^{8}\right)$.

In MixColumn, the 4 -byte vector ($a_{3}, a_{2}, a_{1}, a_{0}$) is replaced by the result of multiplying $a(x)=a_{3} x^{3}+a_{2} x^{2}+$ $a_{1} x+a_{0}$ by the fixed polynomial

$$
c(x)=03 x^{3}+01 x^{2}+01 x+02
$$

and reducing modulo $x^{4}+1$. The coefficients of $c(x)$ are given as bytes in hex notation.

