

FACULTY OF SCIENCE Department of Mathematics and Statistics

Pure Mathematics 431

Algebra II

(see Course Descriptions under the year applicable: <u>http://www.ucalgary.ca/pubs/calendar/</u>)

Syllabus

lopics	Number of
Review of basic concepts of group theory; isomorphism theorems	<u>110urs</u> 3
Group actions; conjugacy and the class equation; semidirect products	3
The Sylow theorems; classifiication of groups of small order	3
Nilpotent and solvable groups; the Jordan-Holder theorem	3
Simplicity of alternating groups and of PSL(2,q) (time permitting)	
Review of polynomial rings over fields	3
Vector spaces over an arbitrary field; basis and dimension	3
Algebraic and transcendental field extensions; adjoining the root of a polynomial	3
Degrees of finite extensions; multiplicativity of the degree in towers	3
Existence and uniqueness of the splitting field of a polynomial; finite fields	3
Galois groups of polynomials; normal and separable extensions	3
The fundamental theorem of Galois theory	3
Solutions of equations by radicals; applications to geometric constructions (time permitting)	
TOTAL HOURS	33

The main objective of this course is to provide students with a solid under- standing of the most important algebraic systems: groups and commutative rings. They should understand, and be able to use the Sylow theorems, the fundamental theorem of finite abelian groups, the factorization theory of in- tegral domains including principal ideal domains and unique factgorization domains, and the structure of finite fields. Time permitting they should have some idea about nilpotent groups and Galois theory. A student who successfully completes this course will:

- 1. Be able to manipulate these systems and prove basic facts about them
- 2. Have the skill to use the basic theorems about these systems to solve theoretical exercises and to construct examples and counter-examples
- 3. Understand the basic proof techniques of these subjects and be able to apply them
- 4. Have an appreciation of some of the open questions in these subjects and the role of such questions in the development of the theory
- 5. Have an appreciation of the beauty of these structures and their historical significance

* * * * * * *

11:07:01 WEC