PMAT 613 L01 Fall 2009 Assignment 3

Questions taken from the text by I. Stewart (3rd Edition) will be specified by page and number. Due Oct 27, 2009.

- 1. Apples sell for 61 cents each and grapefruits sell for 74 cents each. Jane goes to the store and buys some apples and some grapefruits, spending \$30.00 total. How many of each did she purchase? Use the euclidean algorithm and Z-process (or equivalent).
- 2. Show that the concept of an algebraic simple extension is well defined. Thus, if L = K(x) is a simple algebraic extension, and also L = K(y), you must show that y is an algebraic element of L.
- 3. Show that the units of a (not necessarily commutative) ring form a group under multiplication. What does this imply for K^* when K is a field?
- 4. (a) For a PID D, show that p is prime iff p|(ab) implies p|a or p|b, assuming as usual p is not 0 or a unit. [Half of this result was already done in the lectures]. This second concept is often called irreducible.
 - (b) Give an example of a domain D where prime and irreducible are not equivalent.
- 5. In $\mathbb{Z}[t_1, t_2, t_3]$, write
 - (a) $t_1^3 + t_2^3 + t_3^3$ as a polynomial in $\sigma_1, \sigma_2, \sigma_3$,
 - (b) do the same for $t_1^2t_2 + t_2^2t_1 + ... + t_3^2t_2$.
- 6. 4.2 For $X \subset \mathbb{C}$, find \overline{X} , the subfield generated by X, in each of the following cases.
 - (a) $X = \{0, 1\},\$
 - (b) $X = \{0\},\$
 - (c) $X = \{0, 1, i\},\$
 - (d) $X = \{i, \sqrt{2}\},\$

- (e) $X = {\sqrt{2}, \sqrt{3}},$
- (f) $X = \mathbb{R}$,
- (g) $X = \mathbb{R} \cup \{i\}.$
- 7. (a) 4.4 Prove that $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$ are linearly independent over \mathbb{Q} [the text gives hints].
 - (b) Determine whether $L:\mathbb{Q}$ is a simple extension, where $L=\mathbb{Q}(\sqrt{2},\sqrt{3}).$
- 8. 4.10, giving counterexamples when false.