PMAT 613 L01 Fall 2009 Midterm Solutions

The solutions are outlined here, most but not all details are given.

1. Express $x^{3} y^{3} z+y^{3} z^{3} x+z^{3} x^{3} y$ as a polynomial in the elementary symmetric polynomials $\sigma_{1}, \sigma_{2}, \sigma_{3}$ in x, y, z.
Answer : $p(x, y, z)=\sigma_{3}\left(\sigma_{2}^{2}-2 \sigma_{1} \sigma_{3}\right)$.
2. Answer True or False for each of the following, and give a counterexample when False.
(i) Every polynomial irreducible over \mathbb{Z} is irreducible over \mathbb{Q}.

True - Gauss' Lemma
(ii) Every polynomial irreducible over \mathbb{Q} is irreducible over \mathbb{R}.

False, e.g. $t^{2}-2$.
(iii) Every polynomial irreducible over \mathbb{R} is irreducible over \mathbb{C}.

False, e.g. $t^{2}+1$.
(iv) Every non-constant polynomial over \mathbb{Q} has a zero in the algebraic numbers \mathcal{A}.

True
(v) All simple algebraic extensions of a field K are isomorphic.

False, e.g. $\mathbb{Q}\left(2^{1 / 2}\right)$ and $\mathbb{Q}\left(2^{1 / 3}\right)$ are simple algebraic extensions of \mathbb{Q} but cannot be isomorphic since they have different degrees over \mathbb{Q}.
(vi) All simple transcendental extensions of a field K are isomorphic. True
(vii) Two field extensions over K having the same finite degree are isomorphic.
False, e.g $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ both have degree 2 but are not isomorphic, which has to be proved by showing that no isomorphism $\phi: \mathbb{Q}(\sqrt{2}) \rightarrow$ $\mathbb{Q}(\sqrt{3})$ can exist (where ϕ is the identity on \mathbb{Q}). For one would have to
have $\phi(\sqrt{2})=a+b \sqrt{3}$ for some $a, b \in \mathbb{Q}$, and squaring both sides will lead to a contradiction.
(viii) Two field extensions over K that are isomorphic have the same degree.
True
(ix) The degree of any minimum polynomial is a prime number.

False, e.g. $m_{\alpha}(t)=t^{4}-2$ has degree 4 , and this is a monic irreducible (by Eisenstein) polynomial, hence is the minimal polynomial of a simple algebraic extension of \mathbb{Q}.
(x) Two simple algebraic extensions of a field K with different minimal polynomials cannot be isomorphic.
False, e.g. $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)$ where $\alpha=\sqrt{3}$ and $\beta=\sqrt{3}+1$, but $m_{\alpha} \neq m_{\beta}$.
3. Let $L=\mathbb{Q}(\alpha)$, where $\alpha=\sqrt{1+\sqrt{5}}$. Find $[L: \mathbb{Q}]$, giving the necessary details.
Solution: The degree is 4 . To see this one shows first that $\alpha^{4}-2 \alpha^{2}-4=$ 0 . So consider $p(t)=t^{4}-2 t^{2}-4$. This is monic, and to show that it equals the minimal polynomial m_{α} it remains to show it is irreducible (over \mathbb{Q}, equivalently over \mathbb{Z}). Unfortunately there seems to not be any quick way to do this, but a little work shows it cannot have a linear factor, or a quadratic factor.
4. Let $L=\mathbb{Q}(\alpha)$, where α has minimum polynomial $M_{\alpha}(t)=t^{3}-t^{2}+1$.

Express $\frac{\alpha^{5}}{\alpha^{3}+\alpha+3}$ in the form $a \alpha^{2}+b \alpha+c$ for some $a, b, c \in \mathbb{Q}$.
Solution : $(1 / 5)\left(\alpha^{2}-\alpha-2\right)$
5. (a) The dihedral group $D_{2 n}$ of order $2 n$ is defined as

$$
D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=e, \quad b a b=a^{-1}\right\rangle .
$$

Show that $D_{2 n}$ is a solvable group.
(b) Let $x \in \mathfrak{S}_{n}$ have odd order. Show that $x \in \mathfrak{A}_{n}$.

Solution (a) $A:=\langle a\rangle$ is clearly a cyclic subgroup of order n. So it has index 2 , and is therefore a normal subgroup. Then $\{e\} \triangleleft A \triangleleft D_{2 n}$ is a normal series and the quotients are abelian, being respectively A and \mathbb{Z}_{2}. By definition, then, $D_{2 n}$ is solvable.
(b) Recall that there is a homomorphism $\varepsilon: \mathfrak{S}_{n} \rightarrow \mathbb{Z}_{2}=\{ \pm 1\}$, where $\varepsilon(\sigma)=\operatorname{sgn}(\sigma)$. We are given that $\sigma^{2 k+1}=e$. It follows that

$$
+1=\varepsilon(e)=\varepsilon\left(\sigma^{2 k+1}\right)=(\varepsilon(\sigma))^{2 k+1}=\left(\varepsilon(\sigma)^{2 k} \cdot \varepsilon(\sigma)=\varepsilon(\sigma),\right.
$$

and thus $\sigma \in \mathfrak{A}_{n}$.

