Week 1

Substitution Ciphers and Information
Theory

Definition 1.1 (cryptography, cryptology). Techniques involving the generation, storage, and transfer
of information providing properties such as:

e privacy (confidentiality)
e authentication (data or person)

e non-repudiation (eg. signatures that can’t be denied)

Rivest: “Cryptography” is communication in the presence of adversaries.”

History

Cryptography is more than 4000 years old. This century highlighted by new applications to and demands
from cryptography due to computers and new communication methods. See Kahn — “The Codebreakers”
and Singh — “The Code Book.”

e 1920’s — Friedman applied mathematical techniques to code-breaking (cryptanalysis)
e 1940’s — Shannon introduced rigorous mathematical concepts (information theory)
e 1970’s

— DES proposed as a standard (IBM)
— Public-key cryptography introduced by Diffie and Hellman (including digital signatures)
— RSA scheme proposed

e 1980’s and on — lots of new scientific methodology and new applications
e 2001 — AES accepted as standardized successor to DES

Example 1.1. Zero-knowledge proof systems. Suppose two entities (A and B) know a particular n-node
graph, and A knows a Hamiltonian cycle on the graph. B knows the graph is Hamiltonian, but doesn’t know
a path.

A zero-knowledge protocol allows A to prove to B that he knows a Hamiltonian cycle without revealing the
actual cycle to B.

Can be used as the basis for authentication / access control schemes.
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1.1 Substitution Ciphers

We will begin with some simple schemes and see why they don’t/do work.

Method 1

Message of characters (ASCII 7-bit encoding). Choose a random offset 0 < K < 127 (for example).
Encrypt: shift characters by K (add K mod 128). Eg. K = 2. HELLO encrypts to JGNNQ
Decrypt: subtract K

The value of K must be kept secret.

Note. K = 3 — Caesar cipher

This scheme might work for very few characters (say 1), but is very insecure for more characters. For example,
suppose Ex (THE RAIN IN SPAIN) = C = XYWZP%S T3R..... Compute Do(C), D1(C), ..., D12s(C) (try
all possible keys). For sufficiently long plaintexts, chances are good that only a single value of K will yield
meaningful English. (Prob of n character message being English is about 1/23-2".)

Definition 1.2 (Unicity distance). The minimal message length necessary to ensure only one decryption
yields meaningful English text

For English (using the above cipher), this is about 25-28 characters (different for other languages and other
ciphers).

For short plaintexts, there may be many possible decryptions (eg. HAL, IBM, etc...).

The same kind of problem happens with any small key space (our example has only 7 bits).

Method 2

Instead of fized offsets, use a random permutation of {0,...,127} for the offsets.
How many permutations (keys)? 128! (log(128!) ~ 716 bits of key)

Trying 10'® per second results in only 10?2 attempts per year. Therefore, an exhaustive search attack is not
possible (would require about 10'%° years).

Nevertheless, this cipher can still be broken using other language statistics. For example, in English, character
frequencies tend to be

E—1251%, T — 9.25%, A — 8.04 %, ..., Z — 0.09%

Try setting the most frequent ciphertext symbol to E, then T, etc... With a little effort, such a cipher can
be broken easily (even if the ciphertext doesn’t fit frequencies exactly). For example, the book “A Void” has
no letter e! Other statistics, like digraph and trigraph frequencies (TH vs HT) can also help.

One moral: A large key space is necessary, but not sufficient.

Method 3

Try random substitutions of pairs of ciphertexts. For example:
JACK ANDJILLX — RZPW...

Still breakable by higher-order statistics, but harder (longer keys — log(128%)! ~ 205748, larger unicity
distance — 64297)

Trigraph (triplets), quartets, etc... are even harder to break, but still breakable.
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1.2 Entropy

Definition 1.3 (Shannon). The entropy of a probability distribution (3} p; =1,0<p; <1)is

n
H(p1,p2,---,pn) = — Y_pilogp; (0log0 =0) .
i=1

Intuition: measures the amount of uncertainty in an event, or the amount of information that’s really
contained when it occurs.

Example 1.2.
H(0,1,0,0) = 0 — sure of outcome (event 2)

H(0.01,0.98,0.01,0) = € — event 2 is most likely (almost certain)

H(1/4,1/4,1/4,1/4) = 2 (bits) — maximum uncertainty (all 4 events are equally likely)
H(1/2,1/4,1/8,1/8) = 1.75 — in-between case

H(1/2",1/2",...,1/2") =n

Theorem 1.1. A stream of n symbols, independently distributed with entropy H(p) can be compressed to
an H(p)n-bit string.

Compressing n characters of English: 7n ASCII bits to 1.5n compressed bits.

Rate (bits of information per character):

e English — 1.5 bits

e Random (compressed) text — log26 ~ 4.7 bits (randomly distributed)

Redundancy is the difference between the absolute rate (bits of information per character of random text)
and the actual rate. For English, the redundancy is about 4.7 — 1.5 = 3.2.

Relative redundancy: redundancy/absolute rate = 1 — rate/abs rate For english, about 0.68.

1.3 Unicity Distance

Definition 1.4. The unicity distance of a cipher is the amount of ciphertext needed until the encryption
key is unique. Depends on the key entropy and redundancy of the plaintext.

Let’s suppose that the language is English (entropy per character of 1.5 bits). Thus, for n characters,
the entropy is 1.5n. There are approximately 2!-°® n-character English strings, which are a subset of the
26" ~ 2*7" random n-character strings. Therefore, if n characters are chosen at random, the probability
that valid English is obtained is about

21.5n 1
9470 ~ 23.2n

—+0asn— o0 .
Now, given C = Ek,(M) for M n-character English, assume that
VK # Ky, Dk (C) is a random n-character string.

The probability of being English by chance is 1/23-2™.



4 WEEK 1. SUBSTITUTION CIPHERS AND INFORMATION THEORY

Assume that the key is m bits long. Then the expected number of coincidental English decryptions is

m 1 m—3.2n
2 (23.2n) =2

whichis < 1if m —3.2n < 0=-n >m/3.2.
For key length 56, this is about 18.
For key length 128, this is about 40.

Example 1.3. What is the unicity distance for English encoded in ASCII (say 7 bits per character). Assume
random permutation (128! keys) and 3.2 bits per 7-bit character.

716/(7 — 3.2) ~ 189

Complexity of Exhaustive Search

To turn the preceding into a code-breaking algorithm:
Input: ciphertext C = Ex (M)

Construct a boolean circuit with input the m key bits. The circuit applies D to the ciphertext and passes it
through an English-tester (easy to construct) which outputs 1 if the text is English, 0 otherwise.

To find the key, we need to find a satisfying assignment — easily accomplished in O(2™) steps (exhaustive
search - intractable for large m).

This is the SAT problem — if P = NP, then any such scheme is breakable in polynomial time.

1.4 Cryptanalysis

Question: What does it mean to “break” a system?

1. Recover key?

2. Recover whole plaintext?

3. Recover some of plaintext?

4. Recover parity of all plaintext bits (but no individual bits)?

5. Do the above sometimes/always?

Example 1.4. What if data is random binary strings (rather than English characters)? Eg. Swiss banks
assign 100-bit random strings as account passwords. Anybody with the correct string can access the account
(the chance of guessing someone’s password is pretty small). Suppose the password is enciphered with a
substitution cipher.

e Pick a random permutation on {0,1} (1-bit key):
— Iy — identity,
—II; —1=0,0—~1
e Apply permutation to each character (i.e., bit). For example, plaintext 010011011011 enciphers to:
— k=0—010011011011
— k=1— 101100100100
Can you estimate the key from the ciphertext? No!
Can you guess the first bit of plaintext? No!
Can you guess the parity of plaintext bits? Yes!
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1.4.1 Schematic of a conventional (one-key or symmetric) cryptosystem

Secret key shared by Secret key shared by

sender and recipient sender and recipient
J— Transmitied =
— ciphertext —
p— > ]

X Plai
"::;ﬁ“ Encryption sigerithem Decryption algoritm ;:p‘:f‘
(e.g., DES) (reverse of encryption
algorithm)

Encryption function Eg
Decryption function Dg
Clearly, we must have D (Ex(M)) = M for all M

Assume Eve (the eavesdropper) knows what E, D are, but not K, which is randomly chosen. (What does it
mean to not know? H(K) = n large where K € {0,1}".)

Justification for this assumption:

e playing it safe

e 1o loss of generality — if E, D are secret, consider this knowledge as part of the key

extra key bits

(E,D;) 00
(Ez,Dy) 01
(E3,D3) 10
(E4,Dy) 11

Also, Eve may have prior information about plaintext, such as:

e English, Japanese, etc...

e Plaintext begins with “Sept 9, 1999,” “Dear Charlie,” “Please sell,” etc...

Types of Cryptanalytic Attack

1. Ciphertext Only Attack (COA) — the cryptanalyst possesses only the ciphertext

2. Known Text Attack (KTA) — the cryptanalyst has some corresponding plaintext and ciphertext. For
example:

e Diplomatic proposal: it is known that such proposals are usually sent back by the foreign diplomat
to her capital word for word in the original language. If you know which ciphertext corresponds to
which diplomatic proposal, you have knowledge of some corresponding plaintext and ciphertext.
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e Timed press release: big corporations often wish a press release to be issued simultaneously world-
wide, so they transmit it to their offices in encrypted form, together with information on when
to decode it. If you have a copy of this ciphertext, you can (perhaps) match it up with the press
release.

3. Chosen Text Attack (CTA) — the same as KTA, but the cryptanalyst is given plaintext and corre-
sponding ciphertext of his own choosing. For example:

e Diplomatic proposal: if you take an unexpected action, you can be reasonably certain that it will
be reported by the foreign diplomat, and you can probably manipulate the form of the report.

4. Adaptive Chosen Text Attack — attacker is able to select new plaintext/ciphertext pairs based on
previous decryptions

Goals of Eve

Determine

e key
e plaintext

e partial information about the plaintext
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Perfect Security and Block Ciphers

2.1 Perfect Security

Suppose an eavesdropper Eve has the following information:

possible plaintexts Eve’s prior probability Eve’s prob after seeing ciphertext C

M,y p(My1) = p1 q1 =p(M; | C)
M, D2 q2
M; D3 q3
M, Dn dn

Definition 2.1. A cryptosystem is perfectly secure if p(M) =p(M | C), or H(P) = H(Q).

Intuition: the ciphertext C gives an attacker no information about the message that was sent.
Equivalent definition: p(C) = p(C | M).
Note.

p(C) = p(K)p(Dk(C))

keK

pCIM)= ) pK)
B ()=

Recall our Swiss bank example (assuming ciphertext only attack):

Password Prior prob Prof after ciphertext

000...0 1/2™ 0

000...1 12100 0
1/2
1/2

111...1  1/2w00 0

H({P)=100 H(Q)=1

With ABCD string: 24 possible keys, 200 character strings
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Prior After
D1 q1

D2 g2
P4200 4200

H(P) =800 H(Q) <log24 =458

Only 24 of the ¢; are non-zero.
Fact: if (g1,92,...,qn) = (0,0,71,72,0,...,7r3,0) then H(Q) = H(r1,72,73).

2.1.1 The One-time Pad

Let M be any n-bit message and K be any n-bit (random) key. Let C be the ciphertext given by C = M @ K.
This cipher is called the one-time pad, and is provably secure as long as the following hold:

1. K must be random
2. K must be as long as M

3. K must be used only once

Suppose K were used twice:

Ci=M oK
Co=M®d K
= C1®Cy=M & My since K® K = (0,0,...,0) .

Note that C; & C2 = M; & M, is nothing more than a coherent running key cipher (adding two coherent
texts, My and Ms), which is insecure.

Why is this perfectly secure? For all plaintext messages M and ciphertexts C, Prob (M|C) = Prob (M)
(proof for homework).

Moscow-Washington hotline uses this, but it is very expensive and difficult to implement.
Theorem 2.1 (Shannon 1949). With an ny-bit uniformly random key K, and plaintext entropy na,
1. If ns < mq, the perfect security is possible,

2. If ny > ny, then perfect security is impossible.

Proof (Sketch).

1. Use one-time pad, compressing plaintext to no bits if necessary.

2. If there are n possible messages:

prior after
n q1
D2 q2
Pn dn

HP)=ns HQ)<ni <ns

(since at most 2™ of the g; are non-zero).
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2.2 Block Ciphers

Types of ciphers:

1. Stream ciphers — one bit enciphered at a time, dependent on history

2. Block ciphers — blocks of n bits enciphered simultaneously. Designed to be independent of history,
implemented to be dependent on history

A block cipher is a cipher of the form Ex (M) = C, Dg(C) = M. {0,1}™ x {0,1}" — {0,1}" (key/plaintext
to ciphertext).

e block length n = 64,128,192, 256
e key length m “reasonably” large (in practice 128,192, 256)

e Reuse keys for many blocks (say, billions)

How good can such ciphers be? We already know they’re terrible if n = 7.

We can always detect if a block repeats. Serious? Maybe (eg. chosen plaintext — 2128 & 2 x 1038 plaintexts
— too many!)

This problem can be avoided by preventing repetitions. Eg. number each message block (32-bit texts —
32-bit integer number). Then 100 billion bits before we run out of distinct numbers.

Better method: cipher-block chaining (cover later)

Consider the “ideal” case: Ex is a random permutation on {0,1}" (indexed by K). The number of possible
permutations (keys) is

e

rix v (2) 2
(from Stirling’s approximation) and the key entropy is
log(2™) ~ 2™n .
Therefore, key entropy is about 10 when n = 128
Good news: unicity distance is really large (100/3.2)
Bad news (obvious): with such long keys, might as well use one-time pad.

Goal: get by with a much shorter key (key length asymptotically less than message length)

This immediately implies that the unicity distance will be small, so such a cipher is breakable in principle
with small ciphertext.

Caveat: the actual algorithm is in NP, so it may still be computationally hard to break the cipher.

Note. Breakable in polynomial time if P = NP. Thus, proving computational hardness (i.e., not breakable
in polynomial time) also proves P # N P. May be tough to do!

Two simple ideas for designing block ciphers (that don’t work):

1. Random re-ordering of n bits (transposition)

2. Random substitution
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2.2.1 Transposition

(1‘1, T2, .- 7~'En) = (xw(l)amw@)a .. al'w(n))
X X X X
\ ! \ 2 | 3 | 4
[ \ \ \
X X X X
1) mn2) ) (4)

I is a permutation on {1,2,...,n}, not {0,1}".
Thus, there are n! permutations, so the key entropy is about nlogmn.
Good news: shorter keys (296 bits when n = 64)

Bad news: easy to break with known plaintext attack (assignment 2)

2.2.2 Random Substitutions

Do random substitutions on small blocks of text.

X, X
n
LI LLLL LLLL

n n n
1 2 n/b

Say 8-bit blocks (bytes) — at most log(2%!) ~ 1684 key bits per block and at most 13472 key bits in total
(assuming 64-bit blocks).

Good news: keys a bit long but not terrible.
Bad news: easily breakable

2.2.3 Product Ciphers

Alternate transposition and substitution for a few rounds (say 16).
Transposition (diffusion) — broken by linear structure
Substitution (confusion) — nonlinear, but broken by “locality”

This methodology is more heuristic than rigorous, but it defeats our obvious attacks. If details are carefully
chosen, can defeat more powerful attacks such as differential and linear cryptanalysis, even with fairly small
keys.

2.3 Data Encryption Standard (DES)
n = 64 (block size), m = 56 (key length actually 64 bits, 8 of which are parity bits)

1. The 64 plaintext bits are permuted in a fixed order (transposition cipher).
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Thus

DATA ENCRYPTION STANDARD (DES) 11

. The block is divided into two 32-bit words Lo and Rg.

. The block undergoes 16 substitution “rounds.” In each round, one word is transformed using XOR

and a substitution function, after which the two words are swapped.

. In the last round, the two words are not swapped.

. The original permutation is reversed.

DESjey(M) = IP7*(S16(S15(. .. (S2(S1(IP(M))))...))) -

Initial Permutation /P

See FIPS publication. Notation: first bit of the output is the 58th bit of the input.

Substitution Rounds

In round i, the right word R;_; is combined with the ith subkey K; via the function f. The output of f is
XORed with L;_; to form R;. The next left word L; is the previous right word (L; = R;—_1).

The Function f

f accepts as input R; (32 bits) and the ith round subkey K; (48 bits). The subkey generation is described
below. The function f works as follows:

1.

R; is expanded to the 48 bit R; via the expansion function F, which simply repeats some of the bits
of R; in generating R;- (see the FIPS publication for the specification of E).

R, is XORed with K; (both are 48 bits long).

R, ® K; is broken into 8 6-bit words. Each of these words is replaced by a 4-bit word according to the
8 (different) S-boxes Sy, Ss,. .., Ss. The result of applying the S-boxes is a 32-bit string.

The 32-bit string is permuted according to the fixed permutation P (see the FIPS publication).

Generation of the Subkeys K;

1.

The key K (56 bits) is permuted according to the fixed permutation “PERMUTED CHOICE 1” (see
FIPS publication) and separated into two 28-bit words Cy and Dy.

Each word is rotated either one or two places to the left according to the fixed schedule below, yielding
Ci and D;.

Iteration 1 2 3 4 5 6
#ofleft shifts [ 1 1 2 2 2 2

N~

8§ 9 10 11 12 13 14 15 16
21 2 2 2 2 2 2 1

K is obtained from C; and D; via “PERMUTED CHOICE 2,” which selects 48 bits from C; and D,
according to a fixed ordering.

Steps 2 and 3 are repeated with C; and D; to obtain the remaining 15 subkeys.
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Figure 2.1: Diagram of DES

INPUT

'

[INITIAL PERMUTATION ]

L =Ry Ry =Ly & fRy K9

L=R Ry =L; B fR.K )
: P — — <
v 1 |
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I
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v Y
L5=Rig Ris=L1a @ f(Rug. K 15)
K
! 16
f
Ri6=L1s B f(Rys K 1p) L Ris

| |
'

[ INVERSE INITIAL PERMUTATION }

'

OUTPUT




2.3. DATA ENCRYPTION STANDARD (DES)

Figure 2.2: DES function f

R (32 bits)

K (48 bits)

Figure 2.3: DES Key Schedule Algorithm

PERMUTED
CHOICE 1

PERMUTED
1 CHOICE 2

13
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Formal Notation and Decryption

K, = KS(n, key) (K, is the nth subkey, K S is the key schedule)
Note:
Liys = R; C = IP7'(Ris, L1s)
Riyi =Li ® f(Ri,Kip1) i=0,1,...,15 IP(C) = (Rig, L1s)
Li = Riy1 © f(Ri, Kiq1)
Rip1® L = f(Ri, Kiy1)

(IP7! is the inverse of the initial permutation function)

Suppose DESkey (M) = C. Denote by
K, =KS(17—i,key), i=1,2,...,16

(the key schedule in reverse order). Now run the DES device on C, using K] instead of K;. We have
IP(C) = (Ri6,L16), and thus

L;) = R16 R;) = L16
Ly =Ry=IL Ry = Ly & f(R,,K})
= Ris = Ri16 ® f(L16, K1)

= Ry © f(Rus, Ki6)
=Ris ® Ri6 ® L5
= L5

In fact, by continuing this argument we get
L;=Ri6-i R;=Lig-i

and hence ) )
IP_I(RIG,LIG) = IP‘l(LO,RO) =M

Decryption of DES is simply running the DES algorithm on C' with the reverse key schedule.

Note. The invertibility of DES is independent of the function f. Regardless of what function is used for f,
decryption of DES works exactly as described above. This works largely because the individual parts of DES
are involutions — functions that are their own inverses (g(g(z)) = )
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Triple DES and The Advanced
Encryption Standard

3.1 Cryptanalysis of DES

Currently-known attacks:

e exhaustive key search — 2°° computations (ciphertext only)
e linear cryptanalysis — 243 (known plaintexts)

o differential cryptanalysis — 247 (chosen plaintexts)

Designers (IBM and NSA) knew of some of these attacks, but kept it secret.
Very fast hardware implementations of DES, DES chips. The following were proposed, but never built:

e Diffie 1977, 106 DES chips, $20 million US, 12 hours
e Wiener 1993, 57000 DES chips, $1 million US, 3.5 hours

Electronic Frontier Foundation has built a DES cracker for $250000 which finds a single DES key in 56 hours
(tests 8800 keys per usec). A combination of the DES cracker and 100000 PC’s on the internet has found a
DES key in 22.25 hours (tests 245000 keys per usec).

3.2 Modes of Operation
FIPS 81

1. Electronic Code Book (ECB) — encrypt plaintext block independently

2. Cipher Block Chaining (CBC) — plaintext blocks are XORed with previous ciphertexts before en-

crypting
Ci=Ex(M;®Ci_1), M;=Dg(C;)®Ci—y

Set Cyp = IV, a random 64-bit initialization vector (sent in encrypted form to the receiver).

Advantages:

15
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e Repeated plaintext blocks are encrypted differently

e Can be used for message authentication (last ciphertext block depends on all plaintext blocks)
3. Cipher Feedback (CFB) — self-synchronous stream cipher, same advantages as CBC
Ci=M;®z, z= EK(Cz',l)

Co = IV is a 64-bit random initialization vector, can be transmitted in the clear. Can also work with
k-bit (rather than 64-bit) feedback.

4. Qutput Feedback (OFB) — synchronous stream cipher
Ci=M;®z, 2z =EFEk(zi1)

Errors in a given plaintext block do not affect subsequent blocks (good for unreliable communication
channels).

3.3 Triple DES

Try two successive DES encryptions (112-bit key):
C = DESk, (DESk, (M)

Doubling key length squares exhaustive search time — 212 currently intractable.

No extra security if DESk, DESk, = DESk, (i.e., if DES is a group). Campbell and Wiener (1992) proved
that DES is not a group.

Nevertheless, this still doesn’t work due to man-in-the-middle attack. Suppose we have two known plaintext
pairs (Ml,Cl) and (MQ,CQ).

1. Make an array of DESk;:(M1) = D; for all possible DES keys K; with A[D;] = K.
2. Sort the table (or use a hash table).

3. Pick K, at random until A[DESI_(; (C)] = K; is non-zero.

4. Confirm the values of K; and Ky with (My, Cs).

Total number of steps: O(2°¢) — not much more secure than single DES.
Still impractical, but double DES is certifiably weaker.
(FIPS sepcial publication 800-67) Try three successive DES operations (168-bit key):

C = DESk,(DES,; ! (DESk,(M)))
Advantages:
e Same as single key if Ky = K7 or Ky = K3.
e Exhaustive search has complexity 2112 (but with a 168-bit key).

e No other known practical attacks.

Main problems: slow (especially in software), fixed block size (64 bits)
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3.4 The Advanced Encryption Standard

n = 128, m = 128,192,256, world-wide royalty-free availability
Public (world-wide) process of candidate submission and evaluation

Candidates were selected according to:

e security — best attack should be exhaustive key search,
e cost — speed and memory efficiency in software, hardware, and smart cards,

e algorithm and implementation characteristics (simplicity and elegance).

21 algorithms were submitted on June 15, 1998, of which 15 were announced as candidates on August 20,
1998. Five finalists, MARS, RC6, Rijndael, Serpent, and Twofish, were selected in August 1999.

3.4.1 Rijndael

FIPS 197
Rijndael (developed by Daemen and Rijmen) was chosen as the AES.

e designed for block sizes and key lengths to be any multiple of 32, including those specified in the AES

e iterated cipher: number of rounds, N, depends on the key length. N, = 10 for m = 128, N,. = 12 for
m =192, and N, = 14 for m = 256 (see p. 14 of NIST documet).

o Fys = Fy /(28 + 2* + 23 + z + 1) used for non-linear byte operations.

e the algorithm operates on a 4 x 4 array of bytes called the state:

$0,0 | S0,1 | S0,2 | S0,3
51,0 | S1,1 | 81,2 | S1,3
520 | $2,1 | $2,2 | 82,3
53,0 | S3,1 | 83,2 | 53,3

The dimensions of the state depend on the block size.
The Rijndael algorithm (given plaintext M) proceeds as follows (p. 9):

1. Initialize State with M :

80,0 | So0,1 | S0,2 | S0,3 mo | Mg | Mg | M12

51,0 | S1,1 | $1,2 | $1,3 - my | Ms | Mg | 13

52,0 | 82,1 | S22 | 52,3 my | Me | M10 | Mi14

53,0 | 83,1 | 83,2 | 53,3 m3 | M7 | M1 | Mis
where M consists of the 16 bytes mg, m1,...,m15.

2. Perform ADDROUNDKEY, which XOR’s the first RoundKey with State.
3. For each of the first N, — 1 rounds:

e Perform SUBBYTES on State (using an S-box on each byte of State),
e Perform SHIFTROWS (a permutation) on State,
e Perform MIXCOLUMNS (a linear transformation) on State,
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e Perform ADDROUNDKEY.
4. For the last round:

e Perform SUBBYTES,
e Perform SHIFTROWS,

e Perform ADDROUNDKEY.
5. Define the ciphertext C to be State (using the same byte ordering).

Note. Rijndael is a product cipher: each round contains subkey mixing (ADDROUNDKEY), substitution
(SUBBYTES), and a permutation (SHIFTROWS).

The SUBBYTES Operation

(p-15) Each byte of State is substituted (independently). Can be implemented via table lookup (memory
permitting), but is described algebraically. Let ¢ be the function mapping bytes to elements of Fss defined
by

7

¢ : (a7a6...a0) — Zaimi,ai e .
=0

Then:
SUBBYTES(a) = ¢ ' [(z" +2° +2® + £+ 1)¢(a) ' + (2% + 2° + 2+ 1) mod (2° + 1)]
This operation can be performed using the following steps:
1. z = ¢(a) (field representation of the byte a)

2. z = 27! (take the inverse in Fys)

3. b= ¢~!(2) (map the field element z to the byte b)

4. Output the byte b’ using the following affine transformation:
1] [T 0 0 0 1 1 1 1] [be] [1]
by 110 0 0 1 1 1] (b 1
A 11100 0 1 1 b 0
5 _[t 11100 0 1f|bs & 0
b 1 11 11 0 0 Of |bg 0
A 01 11 1 1 0 0f]|bs 1
b 0 01 1 1 1 1 0f|bs 1
7| 0 001 1 1 1 1] [br] |O]

Note that
b = b; D bita mod 8 ® bit5 mod 8 D bit6 mod 8 P Dit7 mod 8 D i

where ¢ = (11000110).

The inverse of SUBBYTES (called INVSUBBYTES, p. 22) is defined by

INVSUBBYTES(a) = ¢~ [((z° + 2° + 2)¢(a) + (2 + 1) mod (z® + 1)) 7]
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The SHIFTROWS Operation

(p. 17) Shifts the rows of State by 0, 1, 2, or 3 cells to the left:

50,0 | So0,1 | S0,2 | S0,3 50,0 | So,1 | S0,2 | S0,3
51,0 | S1,1 | 1,2 | S1,3 . S1,1 | $1,2 | 81,3 | 81,0
$2.0 | $2,1 | 82,2 | 52,3 S22 | 52,3 | 82,0 | S2,1
53,0 | 53,1 | 83,2 | 53,3 53,3 | 3,0 | $3,1 | 3,2

The inverse operation INVSHIFTROWS (p. 21) applies right shifts instead of left shifts.

The MixCoLUMNS Operation

(p- 17) Consider each column of State as a four-term polynomial with coefficients in Fas . For example:
(50,0, 51,0, 2,0, $3,0) F> 83,0y3 + 52,02/2 + 51,0y + s0,0 = colo(y) .

Let a(y) = (z + 1)y® + ¥2 + y + () be fixed. Then the MIXCOLUMNS operation replaces each column of
State via
col;(y) < a(y)col;(y) (mod y* +1), i=0,1,2,3 .

Note. M1XxCOLUMNS can also be described as a linear transformation applied to each column of State, i.e.,
multiplying each 4-element column vector by a 4 x 4 matrix with coeflicients in Fas .

The inverse (called INVMIXCOLUMNS, p. 23) is given by
coli(y) + a(y) " *coli(y) (mod yt + 1), ¢=0,1,2,3

and can also be described as a linear transformation.

ADDROUNDKEY and the Key Schedule

In ADDROUNDKEY (p. 23), each column of State is XORed with one word of the round key:

50,0 | S0,1 | S0,2 | S0,3 50,0 | 0,1 | S0,2 | S0,3 Wo,i4+0 | Wo,i+1 | Wo,i+2 | Wo,i+3
81,0 | S1,1 | 81,2 | S1,3 (_ 51,0 | S1,1 | 81,2 | S1,3 @ W1,i40 | W1,i+1 | W1,i42 | W1,i4+3
82,0 | S2,1 | 82,2 | S2.3 520 | $2,1 | S2,2 | 52,3 W2,i40 | W2 i41 | W2,i42 | W2,i43
53,0 | $3,1 | 83,2 | 83,3 53,0 | $3,1 | 83,2 | 83,3 W3 40 | W3,i4+1 | W3,i42 | W3 43

Here witro = (Wo,i+0, W1,i+0, W2,i+0, W3,i+0) is the first round key for round i, made up of four bytes.
ADDROUNDKEY is clearly it’s own inverse.

Consider 128-bit Rijndael. There are 10 rounds plus one preliminary application of ADDROUNDKEY, so
the key schedule must produce 11 round keys, each consisting of four 4-byte words, from the 128-bit key
(16 bytes). KEYEXPANSION (p. 19) produces an expanded key consisting of the required 44 words. In the
following, the key K = (ko, k1, k2, k3), where the k; are 4-byte words, and the expanded key is denoted by
the word-vector (wo, w1, ws, - .., Waq)-

1. fori € {0,1,2,3},’111,’ =k;
2. forie {4,...,44}:

{SUBWORD(ROTWORD(wi_l)) ®RconN;, if 4]i
W; = Wj—g D .
Wi_1 otherwise
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The components of KEYEXPANSION are:

e ROTWORD is a one-byte circular left shift on a word.
e SUBWORD performs a byte substitution (using the S-box SUBBYTES on each byte of it’s input word).

e RCON is a table of round constants (RCON; is used in round j). Each is a word with the three rightmost
bytes equal to 0.

KEYEXPANSION is similar for 192 and 256-bit keys.

Decryption
To decrypt, perform cipher in reverse order, using inverses of components and the reverse of the key schedule:

1. ADDROUNDKEY with round key N,
2. For rounds N, —1to 1:

e INVSHIFTROWS
e INVSUBBYTES

¢ ADDROUNDKEY
e INVMIXCOLUMNS

3. For round 1:

e INVSHIFTROWS
e INVSUBBYTES
¢ ADDROUNDKEY using round key 1

Note. Straightforward inverse cipher has a different sequence of transformations in the rounds. It is possible
to reorgainize this so that the sequence is the same as that of encryption (see A2).

Strengths of Rijndael

Secure against all known attacks (best known is exhaustive key search).

Non-linearity resides in S-boxes (SUBBYTES):

e linear approximation and difference tables are close to uniform (thwarting linear and differential crypt-
analysis)

e 1o fixed points (S(a) = a) or opposite fixed points (S(a) = a)
e not an involution (S(S(a) # a)

SHIFTROWS and MIXCOLUMNS ensure that after a few rounds, all output bits depend on all input bits.

Secure key schedule:

e knowledge of part of the cipher key or round key does not enable calculation of many other round key
bits

e each key bit affects many round key bits

Very low memory requirements

Very fast (hardware and software)
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Weaknesses

Decryption is slower than encryption (not a problem for CFB, OFB, or MAC generation).

Decryption algorithm is different from encryption (requires separate circuits and/or tables).

3.5 Other Block Ciphers

IDEA, SAFER K-128, RC5, Blowfish (all with 128-bit keys or more)

e Seem resistant to known attacks
e Exhaustive key search intractable

e Fast hardware and/or software implementations

Block ciphers are an important building block of modern security applications. We’ve learned:

e roughly how existing block ciphers work (product cipher)
e outline of kinds of attacks
e potential pitfalls

e heuristic nature of security
We haven’t learned:

e enough to design our own block ciphers (haven’t considered attacks in enough depth)

21
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Week 4

Number Theory and Algorithms

4.1 Linear Diophantine Equations

Solve ax +by = 1 given a,b € Z, b > 0, and gcd(a, b) = 1. If ged(a, b) # 1, the equation is insoluble. If b < 0,
use —b and solve for (z, —y).

Euclidean Algorithm

a=bgy+rg go = |la/bl,0<ro<b
bZToql +7r q1 = Lb/ToJ,0<T1<T0
To =T1G2 + T2 g2 = [ro/r1],0<rs <1y
Tn—3 = Tpn—2qn—1 + Tn—1 Tn—1 = gcd(a, b)
Tn—2 =Tn-1qn + Tn =0

Repeated division with remainder. Notice that the sequence of remainders (the r;) is strictly decreasing,
and thus the sequence is finite (algorithm terminates).

Theorem 4.1 (Lamé, 1844). n < 5log;omin(a,b) (i.e., Euclidean algorithm is O(logmin(a,b)))
Let A_2 = 0, A_1 = ]., B_2 = ]., B_1 =0 and

Ap = qrAp_1 + Ap_2
By, = qxBg-1 + Bg—2

for k=0,1,.... We have A, = a and B,, = b (n from above), and
ApByp_y — BpAp_y = (—1)F 1 .
Putting £ = n yields
ApBy_1 — ByA,_q = (-1)"!
a(=1)"'Bp_1 +b(-1)"A,_1 =1 .
Thus, a solution of ax + by = 1 is given by
r=(-1)""'B,_1, y=(-1)"4,_1 .

Computing z, y in this manner is known as the Extended Fuclidean Algorithm.

23
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4.1.1 Inverses in F;,

Consider the linear congruence axz =1 (mod m) given a,m € Z, gcd(a, m) = 1. We want z such that
mlaz—1 = az—1=ym = ax—my=1
(can be solved using Euclidean Algorithm).

Example 4.1. For 4122z =1 (mod 317) we obtain z = —10, so z = 307 (mod 317) is a solution.

The same algorithm works with a,m € F,[z].

4.2 The Power Algorithm (Binary Exponentiation)

Evaluate a™ (mod m) given a,n,m.
Let n = bo2* + 512~ + --- + br_12 + by, be the binary expansion of n, i.e., bp = 1, b; € {0,1}, 1 < i <k,
k = |logy, n|. Given by, ..., bk, we can evaluate n efficiently (O(log, n)) using Horner’s Method:

n=2(...(2(2b0+b1)+b2)---+bk_1)+bk .

Put
so = bg
Sip1 = 28; + bjp1 (i=0,1,...,k—1)
sk=n .
and define 7; = a® (mod m) for i =0,...,%. Then ry = a’® = a™ and we can compute ;11 iteratively from

r; as follows:
Fip1 = @i+ = @280 = (¢%) 2%+ = (r;)%ab*+ (mod m)

ifby1 =0
r;a modm ifbiy; =1

|
—N—
3
SIS
=
o
(oW
3

This gives us an O(log, n) algorithm to compute a™. Note that there at most 2log, n multiplications, and
no operands larger than m?2.

4.3 Euler’s ¢ Function

Given m what is |Z7,|?
Definition 4.1. Let m be a positive integer. We define
¢p(m)=|{reZ|0<r<m,ged(r,m) =1} .

Note. ¢(m) = |Z},|, the number of integers between 1 and m — 1 which have multiplicative inverses modulo
m.

Let p be a prime. Then
p(p)=p—1=p"(p—1)
o(p’)=p"—p=p'(p-1)
p(p") =p"—p" '=p" '(p-1) .

Let m = mymy be composite. Can we compute ¢(m) if we know @¢(m1), ¢(ms2), and ged(my,me) = 17
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Theorem 4.2 (Chinese Remainder Theorem). If M = myms...my with ged(m;, m;) = 1 for all
1 <i,j <k then there is only one solution X mod M of

z=a; (mod m)
z=az2 (mod ms)

z =ar (mod my).
The solution is given by

k
X =) Ma; (mod M)

i=1

where M; = M/m; and M;(; =1 (mod m;).

Example 4.2. CRT for 2 moduli: if z = a; (mod m) and z = ay (mod my), then z = matias + mitaas
(mod myms), where

maot; =1 (mod my)
mita =1 (mod ms)

Another interpretation: the map

¢: Ly XLy X oo X Ly — L7

mimo... Mg

(a17a27"'3ak) —a

where a = a; (mod m;), 1 <14 < k is an isomorphism.

Theorem 4.3. If gcd(my,m2) = 1, then ¢(mims) = ¢(m1)p(ms).

Proof. Follows from CRT. O

Corollary 4.4. If the prime factorization of m is given by

k
— (71 ;
m = [1p,  pi prime,
i=1

then

k k
o(m) = [T o0s) = T[ ot *i- 1) -

Example 4.3. ¢(42) = ¢(2 x 3 x 7) = ¢(2)¢(3)¢(7) = (1)(2)(6) = 12.
#(360) = $(233%5) = (28 —23)(32 - 3)(5—-1) =4-6-4 = 96.
Recall Z¥, — a finite group of order ¢(m). If [a] € ZZ,, then

¥ = e = 1)
@] = 1]
a®™ =1 (mod m)

Theorem 4.5 (Euler). If gcd(a,m) =1, then

a®™ =1 (mod m) .
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Theorem 4.6 (Fermat). If p is prime, then ¢(p) =p—1 and if p fa
a®'=1 (modp) .

Note. Contrapositive yields a probabilistic primality test using binary exponentiation:

e If a1 =1 (mod N) for a few small primes a /N, then N is probably prime (base a pseudoprime).

e If a1 £ 1 (mod N) for any prime a /N, then N is composite.

Unfortunately, there are composite numbers (called Charmichael numbers) for which a¥~1 =1 (mod N) for
all a with gcd(a,n) = 1. An example is 1729. Thus, this method cannot prove primality.

4.4 Primitive Roots

Definition 4.2. We say that g is a primitive root of m if Z}, = ([g]), i.e., if [g] is a generator.
Example 4.4. Is a = 3 a generator modulo p = 7?7 By tabulating the powers of 3 mod 7 we get
30=1, 3'=3, 32=2, 3F=6, 3'=4, 3P=5 3=1, 37=3,...

(sequence repeats). Since 6 is the smallest power of a yielding 1, 3 is a primitive root modulo 7. 5 is also a
primitive root modulo 7. There are no others (e.g. 2 has period 3).

Theorem 4.7. The only integers which can have primitive roots are 2,4, p™, 2p™ where n € Z% and p is any
odd prime.

Theorem 4.8. If m has a primitive root, then it has ¢(¢(m)) primitive roots.

Computing Primitive Roots

Given a prime p, find a primitive root. Randomly select g and test whether it is a primitive root (probability
about 3/8).

When is g a primitive root modulo p? Let r1,r2,..., 7, be the distinct prime divisors of p — 1. Then g is a
primitive root of p if and only if

gp";il #Z1 (modp) fori=1,2,...,k
Example 4.5. p=19. Select g=2.p—1=18 =2 x 3% and

2(19-1)/2 — 99 = 18 (mod 19)
2(19-1)/3 = 96 =7 (mod 19) .

Thus, 2 is a primitive root of 19.



Week 5

Public-Key Cryptography and RSA

5.1 One-way Functions
A function f is said to be a one-way function if:

1. f(x) is easy to evaluate for a given z.

2. Given y = f(z), it is computationally infeasible to find z.
Example 5.1. A secure cryptosystem (computationally infeasible to find the key) provides a one-way
function. Define y = f(z) = E,(Pp), where Py is a known piece of plaintext. Given Py and y (KTA) it
should not be easy to compute the key z. We could also use f(z) = E,(x).
Example 5.2. Let p be a large prime (~ 21%24) and g be a primitive root. Define

f(z)=¢° (modp), 0<uz f(z)<p.

This seems to be a one-way function if p — 1 has at least one large prime divisor. Computing z given f(z)
and g is known as the discrete logarithm problem.

Best known algorithms:

o Number field sieve — O(e(c+o(1)gn)*(glen)*?y with ¢ ~ 1.923.

e Pohlig-Hellman — O(3  e;(Ign + /pi)) if p— 1 =pi* ... p5".

Example 5.3. Let G be any (multiplicatively written) group with |G| large and define f(z) = ¢g*. Computing
z given g, f(x) is called the discrete logarithm problem in G (the previous example is a special case).

Best known algorithms:

e Generic (Baby-step giant-step, Pollard-rho) — O(+/|G|)
e Pohlig-Hellman — same as above

e Possibly better (even polynomial time) depending on the group.

27



28 WEEK 5. PUBLIC-KEY CRYPTOGRAPHY AND RSA

5.2 Diffie-Hellman Key Exchange

A and B wish to exchange a key for encryption over a public channel in such a way that a tapper cannot
determine the key.

Solution — Due to Diffie and Hellman (1976), still used today.

Select a group G for which n = |G| is large and an element g of large order (a generator if possible).

A Public Channel B
Select 0 < 21 < n randomly Select 0 < x2 < n randomly
Y1 =g" y— Y
Y2 — Y2 Y2 = g™
I('zzygl }( =:yf2

Notice that
Yo' = (97)" = g™ = (9")" = yi®,
i.e., A and B have the same K at the end of the protocol. Use K for the key (e.g. take 128 high order bits).

Originally presented in I, (multiplication mod p, g a primitive root modulo p) but works in any group for
which the DLP is hard.

Security
The tapper has g,y1,y2

e Security is equivalent (provable security) to the Diffie-Hellam problem — given ¢g** and ¢®2, compute
gzlwz .

e DHP <P DLP (other direction unknown)

5.3 One-way Trapdoor Functions

A function f is said to be a one-way trapdoor function if:

1. f(x) is easy to compute for any z.

2. Given y = f(x) it is computationally infeasible to determine z unless certain information used in the
design of f is known. When this special information k is known, there exists a function g which is easy
to compute such that z = g(k,y).

5.4 Public-Key Cryptography

A public-key cryptosystem consists of two functions Ex, and Dk, with the following properties:

1. Ek,(M) and Dg,(C) are easy to compute when K, Ky are known.
2. Di,(Exk,(M)) = M.
3. Given K, Ek,, C = Eg, (M) it is computationally infeasible to find M or K».

Note. In a public-key cryptosystem, it is not necessary for the key channel to be secure.
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Properties 1,2,3 describe Ek, as a one-way trapdoor function. For a signature system (authentication) we
require:

Public-key authentication: A computes S = Dk, (M) and B verifies Ex, (S) = Ex,(Dk,(M)) = M.

Bobs's
public key

Mike Alice
Alice's public Allice 's private
key key
Transmitied —
N @ ciphertext i @ —
» —
";::x' Encryption algorithm Decryption algorithm ":;"‘;::“
ie-g- RSA) {reverse of encryption
algorithm)
{a) Encryption

Alice's
public key

3 Joy Ted
Mike == Bob
Bob's private Bob's public
key key
e Transmitted [ .
— @ ety @ —r =
";h :ﬂ Encryption algorithm Decryption algorithm 'l::';::‘
P {eg- RSA) {reverse of encryption
algorithm)
{b) Authentication

5.5 The RSA Cryptosystem

Named after Ron Rivest, Adi Shamir, and Len Adelman.
The designer:

1. Selects two distinct large primes p and ¢ (each around 25!2 s 101%%)
2. Let n =pq, ¢(n) = (p—1)(¢g—1).
3. Select at random an integer e such that ged(e,¢(n)) =1and 1 < e < n.

4. Solves the linear congruence
de=1 (mod ¢(n)) .
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5. Keeps d secret and makes n and e public, i.e., the public key K1 = n,e and the private key Ko = d, p, q.

Suppose A wants to send a message M to the designer D. We assume that M is an integer and that M < n.
If M > n, block it into less-than-n size blocks.

1. A computes C = M®¢ (mod n) where 0 < C' < n (e and n are D’s public key — everyone knows them)
2. A transmits C.

3. D computes C¢ (mod n) (d is D’s private key — only D knows d)

Note. Encryption and decryption are done using the power algorithm (fast).

Why does this work? We have
Cl=(M®)% =M (modn),

but since d is chosen such that ed =1 (mod ¢(n)) we have ed = k¢(n) + 1 for some k € Z, and
Med = MFIMFL = Ak = M (MP™MYE (mod n) .
Euler’s Theorem states that a®(™ =1 (mod n), so we have
Cl= MMM =M1 =M (modn) .

Note. We have assumed that ged(M,n) = 1 in applying Euler’s Theorem — works for any M (see assign-
ment).

5.5.1 Security of RSA

Factoring n

If n can be factored, RSA is broken. Other direction unknown (computational security).

Small encryption exponents

Small e are insecure if the same message (or only slightly different), is sent to many entities.

Small decryption exponents

The decryption exponent d must be > ¢/n/2 (Wiener 1990).
Improved to d > n%2°2 by Boneh and Durfee (EUROCRYPT 1999)

Finding d or ¢(n)

Knowledge of d or ¢(n) is equivalent to factoring n (see Assignment 3).
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Tterative Attack

Let Co = C = f(M) (f is the encryption function). Define:
Ci = f(C,_l) -

Stop when C,,, =Cy —= M =C\,_1.
This technique is provable equivalent to factoring n under the assumption of the Extended Riemann Hy-

pothesis.
Let

<1

C(s) = -
n=1 n

where s = 0 + ti (a complex number). When is {(s) = 07
o Trivial zeros: s = —2n

e Non-trivial zeros: Riemann hypothesis states that if s is a non-trivial root, then o = 1/2.

Over 1.5 billion non-trivial zeros have been found, and for all of them ¢ = 1/2. The Riemann hypothesis has
resisted proof since 1853.

The extended Riemann hypothesis says that

L(s,x) = Z x(n)

ns

n=1
has its non-trivial zeros on the same line (0 = 1/2), and also remains unproved.
Multiplicative Property

For any messages 1 < My, Ms < n,
(M1 M5)¢ = M{ M5 = C1Cy (mod n)

This property can be used to mount an adaptive chosen ciphertext attack when the victim will decrypt
arbitrary ciphertexts for the attacker:

1. The attacker computes C = CX® (mod n) (wants the decryption of C)

2. The victim decrypts 3 = O = C4(X¢)? = MX (mod n). for the attacker.

3. The attacker recovers M by computing M = M X! (mod n).

This attack can be prevented by, for example, imposing a structure on all messages (reject non-conforming
decryptions).

5.5.2 Summary of RSA
There is no proof that RSA is secure.

e If n can be factored, then RSA is broken. It is not proven whether factoring is hard (computational
security).
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e If d or ¢(n) can be found, it can be used to factor n.

e It is not proven that other methods to compute M given C,e,n do not exist, which do not rely on
factoring. Le., it is not known whether breaking RSA is equivalent to factoring n (provable security).

Nevertheless, we need to design RSA systems such that n = pg cannot be factored easily.

1. p and ¢ must both be large (2°!? ~ 10'5%, soon to be 21024 x~ 10%°8). This means n ~ 21924 (or 22048),

2. [p—q|> ¥n

3.p—1,q—1,p+1, g+ 1 must all have a large prime factor. There are factoring algorithms which can
exploit these properties.

The best general purpose factoring algorithm currently available (the “number field sieve”) can factor n in
logn < e((logn)'/?(loglog n)*/*)(1+0(1))

operations. Massive parallelism, internet distributed computations, are applicable with this algorithm.

Current factoring record (integer without a special form): RSA-155, a 155-digit RSA modulus was factored
in August 1999 (total time — 20 years on a single 450 MHz PC with 64 MB RAM).

Advantages:

1. It seems to be secure.
2. The key size is “small” (two 310 digit numbers).
3. No message expansion.

4. Tt can be used as a signature scheme.
Disadvantages:

1. Tt is very slow compared with DES, RIJNDAEL, and other private key cryptosystems.
2. Finding keys is fairly expensive.

3. Security is unproven.
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More Public-Key Cryptosystems

6.1 Quadratic Residues

Definition 6.1. Let m be any integer. We say that a is a quadratic residue of m if gcd(a, m) = 1 and there
exists some z such that 2 = a (mod m).

Let QR,, denote the set of quadratic residues modulo m.

Definition 6.2. If a is such that ged(a,m) =1 and a ¢ QR,,, we say that a is a quadratic non-residue of

m.

Let QN,, denote the set of quadratic non-residues of m.

Note. Z}, = QR U QR,,.

Suppose m = p, a prime.

Example 6.1. If p = 7 we have QR; = {1,2,4} and QN; = {3,5,6}.

Theorem 6.1 (Euler’s Criterion). a € QR,, if and only if ' =1 (mod p).
Proof. If a € QR,, then 2° = a (mod p) for some z. Then

a? = (332) r =g l=1 (mod p) by Euler’s Theorem

Suppose a’7 =1 (mod p) and let g be a primitive root modulo p. There must exist some i such that g° = a
(mod p), so
g’lp_;1 =ad'T =1 (mod p) .
Therefore gi*z = 1 (mod p) and i can be even or odd. If i is odd, then ¢ = 2k+1 and i25* = k(p—1) + 25+
and
-

gt =gt Dt = g" T = —1#1 (modp) .
Thus i = 2k and putting z = g* (mod p) we get a = 22 (mod p) and a € QR,. O
Definition 6.3. Let p be an odd prime. The Legendre symbol (%) is defined as:

a
P

0 ifpla

(9)= 1 ifacQR,
P -1 ifa€e@N,

33
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Note. a"z = (%) (mod p). Eg. (3) = —1.

Properties of the Legendre symbol:

1. (3 =(-1)* =1ifp=1 (mod 4) and —1if p=3 (mod 4).

2 (=

3. (&) =(2)ifa=b (mod p).

1. (3) = (—1)"% = 1ifp=+1 (mod &) and —1if p = +3 (mod 8).
5. (L) =1ifp Jt

6. (%) = (-1)*F = (2) (Law of Quadratic Reciprocity)

Note. Let g be a primitive root modulo p. Then

0 -1 0 -1
QR, = {¢g* |i= 1,...,I’T} and QN, = {g¥' |i= 1,...,1’7}
Note that |QR,| = |QN,| = 251.
Example 6.2. Evaluate ($2).
One way is 315" 2 = 319515 (mod 1031) but quadratic reciprocity yields a better way:

319\ _ (11-20\ _ (11 (20 _ 1031\ (1031\ _ (8 (16\ _ _(2\__ .. _,
(35~ (352 - () ) =~ 12) (3 -~(2) (9 =) -0
The Jacobi Symbol

Definition 6.4. Let @ be an odd integer with prime factorization @ = []¢;"* and let P be an integer. The

Jacobi symbol (g) is defined as
P P\ %
(Q) =11 (%)

Note. If (Q is prime, then the Jacobi symbol (g) and the Legendre symbol (g) are the same.

where (qf) is the Legendre symbol.

Note. (g) = 1 with Q composite does not necessarily imply that z2 = P (mod Q) has solutions (would need

z? = P (mod ¢;)).

Properties of the Jacobi symbol:

L () = ()

Q
2. (52 = (3D
3. if P, = P, (mod Q), then () = (&)
4. (3) = (=) S = 1§ Q = +1 (mod 8) and —1 if Q = +3 (mod 8)

5. (5) = (-1)7 % (£) (for P odd)
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Example 6.3. Evaluate ($2).

If we treat this as a Jacobi symbol, we don’t need to do any factoring.

S9N (L031N N (2 )\ (3TN _ (37 _ _(319) _ (23) _ (37) (14
1031/ \319/ \319)  \319/\319)  \319)  \37/)  \37)  \23) \23
_ T\ (23 (2 1
- \23) \7) \7)

6.1.1 Square roots modulo p

Given a prime p and an a such that (%) = 1, solve the congruence z? = a (mod p).

Case 1
Suppose p = —1 (mod 4). Then
P 2 p p—
(a#) =a"t =ad"? =a (mod p) .

+1

Hence z = a4
(mod 1031).

(mod p). Eg. p = 1031 = —1 (mod 4), a = 319. We geave 3191032/4 = 319258 = 230

Case 2
Suppose p =5 (mod 8). Since o= =1 (mod p), then ot = +1 (mod p). If afT =1 (mod p), then
p 2 p p—
(aTs) = =0T =a (mod p)

and thus z = +a*F (mod p). If atT =1 (mod p), then

1 egs)” . - .
(5(4a)_8+3) = —(4a) * =4"7 1" T a=—4"Ta=-1 (271)a5a (mod p)

since (2) = —1 (because p =5 (mod 8)). In this case z = :l:%(4a)pT+3 (mod p).

Case 3

(See Handbook of Applied Cryptography, Section 3.5.1) Suppose p = 1 (mod 8). The following randomized
algorithm will find the square roots in expected time O(lg* p).

. Select a random integer b with 1 < b < g — 1 until (%) =-1.

1
2. Compute s such that p — 1 = 2°¢, ¢ odd

3. Set ¢ = bt (mod p) and r = aF (mod p).
4. Fori=1,...,s—14do

ss—i—l

(a) Compute d = (r?a=?!) (mod p).
(b) If d = —1 (mod p), set r = r¢ (mod p).
(c) Set ¢ = ¢? (mod p).

5. Return (r, —r)

Finding the quadratic non-residue (Step 1) is the randomized step of the algorithm. Under the Extended
Riemann hypotheis this step can be done deterministically in polynomial time.
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6.2 The Rabin-Williams PKC

Public-key encryption scheme provably equivalent to integer factorization (Rabin, Williams 1980).

Modification of Rabin’s scheme (see Assignment) with unique decryption.

Lemma 6.2. Let n = pq with p=q¢ = —1 (mod 4). If (%) =1, then
M?*™/* = 41 (mod n)

Proof. (2/1—11) =1= (%) = (%) If (%) =1, then
Mp%1 =

p—1g—1

M= 7 =

1 (mod p)
1 (modp) .

Similarly,
g—1 p—1

M™= = =1 (modg)
and by the CRT we have M?#("/4 =1 (mod n).

If (%) = —1, then we use the fact that (—1)®~1/2 = —1 (mod p) when p = —1 (mod 4) to argue that
MoM/4 = _1 (mod n). O

Key Generation

Select large primes p,q with p =3 (mod 8), ¢ =7 (mod 8), and put n = pq.
Select at random e such that 1 < e < n and ged(e, ¢(n)) = 1.

Solve ed = m (mod ¢(n)) where m = (¢p(n)/4 +1)/2.

Public key: {n, e} Private key: {d}

Encryption and Decryption

Define M = {M | (2(2M + 1) <n and (2Ltl) = —1) or (4(2M + 1) < n and (2H) = 1)}
Theorem 6.3. |[M| =3/164(n) —t and t < 1/2y/nlogn +5/4 (i.e., |IM| € O(n)).

For M € M define:

4(2M +1) 1(2M+): E((M)\ _
Ei(M) = { 2eM +1) if (2ALt1) (note (T)_l)

Ey(N)=N?* (modn) (0< EyN )<nandN€Z)
Dy(K)=K? (modn) (0< Dy(K)<n),
(L/4-1)/2 if L=0 (mod 4)
_J((n—L)/4-1)/2 fL=1 (mod4)
DuZ) = (L/2—1)/2 if L=2 (mod 4)
(n—L)/2—-1)/2 fL=3 (mod 4)

To encrypt M € M, the sender computes C' = Ey(E; (M)).
To decrypt C, the receiver computes D, (D2 (C)) = M.
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Theorem 6.4. If M € M then D1D>sE>E (M) = M.
Proof. We have:
N =E;(M) with2|N,0< N <n, and (%) =1
L =DyE)(N) = N?**? = N?m = N¢(W/4+ = 4N (modn) withO<L<nandn=1 (mod 4)
Thus, if L is even, then L = N and if L is odd, then L =n — N.
If L =0 (mod 4), then 2M +1)=N/4=L/4=— M =(L/4—-1)/2 = D;(L).
IfL=1 (mod4),then2M +1=(n—-L)/4A=M = ((n—L)/4—-1)/2 = D{(L).
If L =2 (mod4),then2M +1=L/2=— M = (L/2—-1)/2 = D:(L)
If L =3 (mod 4), then 2M + 1= (n— L)/2=-M = D:(L). O

We will now show that breaking the encryption scheme is equivalent in difficulty to factoring n.

Lemma 6.5. If n is given as above, then for any X € 7 there exists Y € Z such that X?> = Y? (mod n)
nd (%) = ~(%).

Proof. (=X) = (22) (X) = ~(%). Let

Y=-X (modp), Y=X (modyg) .
Then Y2 = X? (mod n) and

5)-6)E)-G)0=-G)

Lemma 6.6. If K = E(M) (here E = EyE; ), then there exists X1, X such that X; # X5, 0 < X1, X5 < m,
X? = X2 =K (mod n) and (%) = (%) =-1.

O

Proof. Let N = E;(M) and Y = N° (mod n). We have K = (N¢)? = Y? (mod n) and since (¥) =
1= (¥) = 1. By Lemma 6.5 there exists an X such that X? = Y? = K (mod n) and (£) = —1. Let
X1 =X (modn), 0< X1 <n,and Xy =n—X;.

Put ¥ = {X | X? = E(M) (mod n),M € M, (%) = -1,0 < X < n}. Then |X| > 2|M| by Lemma 6.6. If
we select at random a value of X such that (2) = —1 and 0 < X < n (there are ¢(n)/2 such X values) then
the probability that there exists an M € M such that X? = E(M) (mod n) is about 3/4.

If F is an algorithm which decrypts 1/k of all possible ciphertexts, then we see that we can select at random
a value of X (0 < X < n) with (X) = —1 such that E(M) = K = X? (mod n) for some M € M and
F(K) = M with probability about %. We expect to conduct about 4k/3 trials before such an example is
found. Put Y = E; (M)¢ = E;(F(K))®¢ (mod n). Then

Y?=X? (mod n) and (%) =1, (£> =-1

n
andn=pq| X2 -Y2=pq|(X —Y)(X +Y). Now:

o If pg| X —Y, then X =Y (mod pq), and (%) = (%), a contradiction.

o If pg| X +Y, then X = —Y (mod pg), and () = (=X) = (), a contradiction.

Hence, ged(X — Y, n) = p, g, i.e., we can factor n.
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6.3 The El Gamal PKC

It is important to have other public-key cryptosystems whose security relies on other hard problems. RSA
relies on factoring. An alternative PKC is due to El Gamal.

A produces her public and private keys as follows:

1. Selects a group G for which n = |G| is large and an element g of large order (a generator if possible).
Orignially proposed in G = F.

2. Computes y = g* where 0 < a < n.

Public key: {G,g,y}
Private key: {z}

B sends a message M to A as follows:

1. B represents the message M as an element M € G.

2. B selects a random k, 0 < k < n.

w

. B computes K = y*

=~

. B sends {C1,C3} to A where
Ci=g% Cy=KM

A decrypts as follows:

1. Use the private key z to compute C¥ = (g*)* = g** = (¢9*)* = y* = K.

2. Solve Cy = KM for M by computing K~! in G.

Clearly, this PKC is very similar to Diffie-Hellman key exchange (using the common key to encrypt M € G),
and the security results are the same. In particular, any large group with a hard DLP is suitable.

Disadvantages:

1. Increased bandwidth — the communication channel must be twice as wide as the message being sent.
2. Twice as much computational work for encrypting and decrypting (as RSA).

3. A new random number, k, must be generated for each message.

Other PKC’s

Merkle-Hellman — subset sum problem (NP-complete). First concrete realization of a PKC, but insecure
Chor-Rivest — secure subset-sum based PKC

McEliece — decoding linear error-correcting codes

XTR - subgroup of Fy

NTRU - shortest vector in a lattice



Week 7

Probabilistic Public-Key
Cryptography

7.1 Semantic Security

Two disadvantages of deterministic public-key cryptographic algorithms are:

1. Having the same message always encrypt to the same ciphertext

2. Leakage of information. For example, in RSA C = M®¢ (mod n), implying that

c\ _ (M\° (M
n) \n) \n
since e is odd. Thus, one bit of information about the message is leaked (namely the value of the
. M
Jacobi symbol (&).
Probabilistic encryption utilizes randomness to attain a provable and very strong level of security. There are

two strong notions of security that we can strive to achieve.

Definition 7.1. A public-key encryption scheme is said to be polynomially secure if no passive adversary
can in expected polynomial time select two plaintext messages M; and M; and then correctly distinguish
between encryptions of M; and M, with probability significantly greater than 1/2.

Definition 7.2. A public-key encryption scheme is said to be semantically secure if for all probability dis-
tributions over the message space, whatever can be computed by a passive adversary in expected polynomial
time about the plaintext given the ciphertext can also be computed in expected polynomial time without
the ciphertext.

Intuitively, semantic security is a weaker version of perfect security — an adversary with polynomially-
bounded computational resources (as opposed to infinite in perfect security) can learn nothing about the
plaintext from the ciphertext.

Theorem 7.1. A public-key encryption scheme is semantically secure if and only if it is polynomially secure.

7.2 The Goldwasser-Micali PKC

Achieves semantic security assuming the intractability of the QRP.

39
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Definition 7.3. Quadratic Residuosity Problem (QRP) — given an odd composite integer n and any a such
that (£) =1, determine whether a € QR,,.

Note. QRP <[, FACTORING, since a € QR,, if and only if (%) = 1 for all primes p|n. Equivalence is
believed, but unproved.

A produces her public and private key as follows:

1. Selects two large random distinct primes p, ¢
2. Computes n = pq

3. Selects y such that (¥) = (¥) = —1 (y is a pseudosquare modulo n = pq since (£) =1 but (¥) = -1

implies that y is not an integer square)

Public key: {n,y}
Private key: {p,q}

To encrypt a message M and send to A, B:

1. Represents M as a bit-string (mims ...my) (m; = 0,1)
2. Fori=1,...,t:

(a) Pick r € Z such that 1 < r < n at random
(b) Put ¢; = y™ir? (mod n) with 0 < ¢; <n

3. Send C = (cic2...¢;) to A
To decrypt, A:

1. fori=1,...,t

(a) Compute the Legendre symbol e; = (%)
(b) mi=(1—e;)/2

2. M = (mlmg...mt)

Proof that decryption is correct. For any i with 1 <i <t we have ¢; = y™ir?> (mod n). Thus

=)= (57)=(5) =) -

Thus, if e; = 1 then m; = 0 and if ¢; = —1 then m; = 1. O

Security

Since r is selected at random, r? is a random quadratic residue modulo n and thus yr? is a random pseu-
dosquare modulo n. The cryptanalyst only sees a sequence of 72 or yr? (quadratic residues and pseu-
dosquares), and as the QRP is hard, he cannot distinguish which one from the other.

Major disadvantage — very large message expansion (Ig> n bits required as opposed to lgn for RSA)
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7.3 The Blum-Goldwasser PKC

Efficient probabilistic technique, semantically secure assuming the intractability of integer factorization.
Smaller message expansion — only < |lgn| additional bits.

Idea: a pseudorandom bit stream (from the Blum-Blum-Shub pseudorandom number generator) is XORed
with the plaintext. The private key is used to recover the random seed used by the sender to initialize the
PRNG.

A creates her public key as follows:

1. Selects two large and distinct primes p, ¢ with p = ¢ =3 (mod 4).
2. Computes n = pq (n is a Blum integer)
3. Finds a and b such that ap + bg = 1 with a,b € Z.

Public key: {n}
Private key: {p,Q;aa b}

B encrypts M to send to A as follows:

1. Let k= |lgn| and h = |lgk| > 1. Represent M as a string M = (mims...my) of length ¢ where each
m; is a binary string of length h.

2. Select a seed xo which is a random quadratic residue modulo n (simply select a random r < n and put
zo = r? (mod n)).

3. Fori=1,...,t:

(a) Compute z; = z7_; (mod n).
(b) Let p; be the least h significant bits of z;.
(¢) Compute ¢; = m; & p;.

4. Compute z411 = z7 (mod n).
5. Send C = (cic2...¢t,xe41) tO A.

Note. Only |lgzi41] < |lgn| additional bits transmitted.

A decrypts M from C' as follows:

1. Compute

1\t 1\
dy = (%) (mod p—1), do = (%) (mod g —1)

2. Compute u = ﬂffh (mod p) and v = mfjl (mod q).
3. Compute g = vap + ubg (mod n).
4. Fori=1,...,t:

(a) Compute z; = z2_; (mod n).
(b) Let p; be the h least significant bits of z;.
(¢c) Compute m; = p; ® ¢;.

5. M = (mima...my).
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Proof that decryption is correct. Since z; € QR,,, we have z; € QR, ﬁ:c:% =1 (mod p). Thus

p+1 p+1 p+1 p—1

thrTlE(wf) =z, =x,° ry =24 (modp) .

P+l
Similarly, z, * = x4—; (mod p), and repeating this argument yields

u= x;ﬁ_l =19 (modp), v= xf_";_l =19 (modgq) .

By the CRT we get
vap + ubg = zo (mod n),

and thus A creates the same random seed zy used by B to encrypt. Hence, A can now decrypt C. O

Security

Note that any method that breaks the scheme must reveal the parity bit of the z; (the key).

Theorem 7.2. Let A, be an algorithm which given any x € QR,, returns the parity bit of y where y?> = z
(mod n) and y € QR,,. Then A,, can be used to solve the QRP for any [a] € Z?, with (%) =1.

Proof. Suppose we wish to solve the QRP for some [a] € Z. We first determine z = a? (mod n). We apply
Ay, to z to get b= A, (). Now b is the parity bit of some y where y?> = x (mod n) and y € QR,,. We know

y? =a? (mod n) =>n = pq|(y — a)(y + a). Suppose p|y — a and q|y + a. Then
ply—a=>y=a (modp) =1= (E) = (2)
p p

and similarly

dly+a=y=—a (modq)=>1= (%) _ (%) :_(g>

and thus () = (2) = 1, which is a contradiction. Hence y = +a (mod n).

e If y = a (mod n), then b is the parity bit of a and a € QR,,.
e If y = —a (mod n), then y =n — 1 and b is the parity bit of y and is not the parity bit of a (since n is
odd).
Thus, if the parity bit of a equals b, then a € QR,, and if it does not equal b, then a ¢ QR,,. O

Disadvantage: scheme is vulnerable to a chosen ciphertext attack (in an analogous manner to the Rabin
PKC). This can be overcome by adding prescribed structure to each message, but the security proofs are
then no longer valid.

Advantage: fast (even compared with RSA).
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Data Integrity and Digital Signatures

8.1 Hash Functions

Definition 8.1. A hash function is a function H which has at least the following properties:

e compression — H maps an input z of arbitrary bitlength to an output H(z) of fixed bitlength,

e ease of computation

Idea: from a given message M, generate a small fixed-length digital fingerprint or message digest H(M) with
the following properties:

1. preimage resistance (one-way) — given any hash value z, it is computationally infeasible to find any
input M for which H(M) = x.

2. second-image resistance (weak collision resistance) — given M, it is computationally infeasible to find
M'# M with H(M) = H(M").

3. collision resistance (strong collision resistance) — it is computationally infeasible to find two distinct
inputs M and M’ such that H(M) = H(M").

A message digest provides data integrity:

e Send the message M together with S = H(M) (the pair (M,S), or S alone, must be encrypted).
The receiver independently computes H(M) and compares with S. If they match, then with very high
probability M has not been modified (similar to using a checksum).

e Properties 1,2,3 guarantee that it is computationally infeasible to effect undetectable malicious modi-
fications when H (M) is encrypted (checksums do not provide this property).

Examples of hash functions:

e MD5 — 128-bit hash length, developed by Rivest. Collisions can be found in 24 days using a special-
purpose machine costing 10 million (van Qorschot and Wiener, Second ACM conference on Computer
and Communication Security, 1994). Broken Crypto 2004.

e SHA-1 — 160-bit hash length, developed by NIST in 1993 (FIPS 180 and FIPS 181). No known
weaknesses (but not all design criteria is public).

43
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e RIPEMD-160 — 160-bit hash length, developed by the European RACE Integrity Primitives Evalua-
tion (RIPE) project. Broken Crypto 2004.

Collisions on an n-bit hash function can be found in O(2"/2) attempts due to the birthday paradox. Thus,
at most n/2 bits of security are possible.

Eg. 1024-bit RSA provides 80 bits of security, so it should be paired with a 160-bit hash function and an
80-bit block cipher (so that all three components equally strong).

Note. Security levels (NIST recommendations):

RSA modulus (in bits) | 1024 | 2048 | 3072 | 8192 | 15360
Hash size (in bits) | 160 | 224 | 256 | 384 512
Security level (in bits) 80 | 112 | 128 | 192 256

8.2 Message Authentication Codes

Similar to hash functions, but a secret key K is required as a parameter. MACs are also known as crypto-
graphic checksums.

In addition to data integrity, MACs provide message authentication — only entities possessing the secret
key K can generate MACs.

A secure block cipher (satisfying additional statistical properties) can be used to generate MACs. Two
methods are:

1. CBC-MAC: Encrypt the message using cipher block chaining. The last cipher block (whose bits are
dependent on all the key bits and all message bits) is the MAC.

2. CFB-MAC: Same as CBC-MAC, but use cipher feedback mode to generate the MAC.

A CBC-MAC using DES appears in FIPS 113 and forms the ANSI X9.17 standard.

Note. Non-repudiation of data origin is not provided — any party possessing K can generate MACs.

8.3 Digital Signatures

A digital signature is a simple means by which the recipient of a message can authenticate the identity of
the sender. It should have two properties:

1. Only the sender can produce his signature.

2. Anyone, including an arbitrator, should be easily able to verify the validity of the signature.

Note. This is different from a MAC — both sender and receiver can generate MACs (eg. using DES).

8.3.1 Authentication Without Secrecy

A sender wishes to send M and a signature indicating that he produced M. If the sender uses a public-key
cryptosystem which is also a signature system, he can sign his message.

Suppose A is the sender. She has a decryption scheme D4 and an encryption scheme E4. She creates her
signature by computing
S = Du(M)
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and sends (M, A, S). Anyone who receives (M, A, S) can find E4 (because it is public) and verify the message
by computing E4(S) and comparing to M. If the message is authentic, then

Es(S) =Ea(Da(M))=M .

This works with RSA because it is a signature system:
S =Du(M)=M%¥ (mod ny)
EA(S) = Ea(Da(M)) = (M%) (mod n4)
= (M4 (mod ny)
=M .

8.3.2 Authentication With Secrecy

Problem: A wants to send a secret message M to B. B wants to be sure that A sent M.

Solution: A calculates S = D4(M) (S is the signature). He then uses B’s encryption system to compute
Eg(S,M) = F and sends (F, A) to B.

B, on receiving (F, A) computes
Dgp(F) = Dp(EB(S,M))=S,M

and then verifies that
Es(S)=M .

8.3.3 Impersonation

Problem: C can send a message to B in such a way that B thinks it came from A. C knows Ey4, so C
can select some L and compute E4(L). C then sends (E4(L), L) to B. B assumes that L is the signature,
evaluates E4(L), and accepts E4(L) as the message.

Language redundancy usually foils this attack, since E4(L) will normally not be coherent English text.
However, if A is supposed to be sending random information, this will be a problem.

Solution: A sends (M, D4(H(M))), where H is a one-way function (cryptographically secure hash function
is best). B computes G = EA(Da(H(M))) and H(M), and checks that they are the same. Only A could
send M.

Suppose C attempts to impersonate A as above. If C randomly chooses L, computes X = H~1(E4(L)), and
sends (X, L) to B, then he will be successful since B will compute E4(L) and verify that this is equal to

H(X)=H(H ' (Ea(L))) = Ea(L) .

However, if H is a one-way function, C' cannot find a suitable X, and therefore will not be able to impersonate
A

Note. Signing H(M) instead of M also results in faster signature generation if M is long.

When a cryptographic hash function is used for signature generation, it should be considered as a fixed part
of the protocol (i.e., an adversary should not be able to substitute it with a cryptographically weak hash
function).

Examples:
e El Gamal (randomized, security based on DLP in a finite abelian group)
e DSA (variation of El Gamal in F;, with short signatures)
o Feige/Fiat/Shamir (security based on computing square roots modulo n = pq)

e Guillou/Quisquater (security based on extracting eth roots modulo n = pq)
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8.4 The El Gamal Signature Scheme

The El Gamal signature scheme is a variation of the El Gamal PKC. Security considerations are the same.

A cryptographic hash function H : G — Z, is required (computes hash values of the binary representation
of a group element).

A produces her public and private keys as follows:

1. Selects a group G for which n = |G| is large and an element g of large order.
2. Randomly selects x such that 0 < < n and computes y = g”.
Public key: {G,n,g,y}

Private key: {z}
Note. The order of the group G must be known (not tractable for all groups G).

A signs message M as follows:

1. A selects a random integer k¥ with 0 < k < n and ged(k,n) = 1.
2. A computes r = g*

3. A computes s = k~[H(M) — xH(r)] (mod n).

4

. A’s signature is the pair (r, s).
B verifies A’s signature as follows:

1. B obtains A’s authentic public key {G,n,g,y}.
2. B computes v; = yH(’)rs and vy = gH(M)_

3. B accepts if and only if v = vs.

Proof of correctness. If the signature (r, s) on message M is valid, then
vy = yH )
— (gz)H(r) (gk)k_l[H(M)sz(r)]
= geH () gH(M)—2H (r)

cH(r)+H(M)—zH(r)

8.5 The Digital Signature Algorithm (DSA)

Invented by NIST (National Institute for Standards and Technology) in 1991 and adapted as a standard
(Digital Signature Standard) in Dec. 1994.

Variation of El Gamal signatures — similar security characteristics.

Let H be a cryptographically secure hash function that maps bit strings to Z, for some integer g. The DSS
specifies that SHA-1 be used.

A produces her public and private keys as follows:
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1. Selects a 512-bit prime p and a 160-bit prime ¢ such that ¢|p — 1.
2. Selects g, a primitive root modulo p

3. Computes h = g(?»~19/¢ (mod p), 0 < h < p. Note that h? = 1 (mod p), and if a = b (mod g), then
h® = ht (mod p).

4. Randomly selects z € Z with 0 < z < ¢ and computes y = h” (mod p)

Public key: {p,q,h,y}
Private key: {z}

A signs message M as follows:

1. A selects a random integer k with 0 < k < gq.

[\]

. A computes r = (h* mod p) (mod ¢), 0 < r < q.
. A computes s = k"1 (H(M) + zr) (mod gq).

3
4. A’s signature is the pair {r, s} (320 bits)
B verifies A’s signature as follows:

1. B obtains A’s authentic public key {p, g, h,y}.

2. B computes u; = H(M)s™! (mod q), uz = rs~! (mod q), and v = (h*'y*2 mod p) (mod ¢q), 0 < v <
q.

3. B accepts if and only if v = 7.

Proof of Correctness. We note that k = s~*(H(M) + zr) (mod ¢) and

hulyuz = hH(M)s_lyrs_1 (mod p)

= pH(M)s™! pars™! (mod p)
= p* (HOM)tar)  (mod p)
=h* (mod p)
Hence (h**h*2 mod p) = r (mod ¢) and v =r. O

Note. We have a small signature (320 bits) but computations are done modulo a 512-bit prime. Security is
based on the belief that solving the DLP in ([A]) € F; is hard.

8.6 Elliptic Curves

The most promising implementations of El Gamal and DSA signatures is to use for the group G the set of
points on an elliptic curve defined over a finite field. The corresponding discrete logarithm problem appears
to be very difficult (best known algorithms have exponential complexity).

Definition 8.2. Let F be a field. An elliptic curve E over F is a curve given by an equation of the form
Y24+ XY +a3Y =X +aX?+auX +ag, a;€F .

E(F) denotes the set of points (z,y) € F? that satisfy this equation together with a “point at infinity”
denoted by O.
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If char(F) # 2,3, the equation of the curve can be transformed to
Y2=X>4+aX +b, a,b€eF
via a change of variables. If char(F) = 2, the equation transforms to
V?4+cY =X*+aX+b or Y+ XY =X*+aX?+b

and if char(F) =3
Y2=X*4+aX’+bX +c .

8.6.1 The Group Law

E(F) forms an abelian group under an operation called point addition, provided that the curve is non-
singular. If char(F) # 2,3, this is equivalent to X2 + aX + b having no repeated factors, or that the
discriminant 4a® + 27b% # 0.

To explain this group law, we consider the case F = R. The rules for point addition can be summarized as:
The sum of three points where a line intersects the curve is O.
Note. The point at infinity is the “third point of intersection” of any vertical line with the curve.

This idea leads to the following rules for adding and inverting points.

Definition 8.3. Let P, be points in E(R) for some elliptic curve E. The negative of P (given by —P) and
the sum of P and @ (given by P + @) are defined as follows:

1. If P = O, then —P = O. For any point () we define O + @Q = @ — O serves as the additive identity.
In what follows, assume neither P nor @ is O.
2. If P = (z,y), then —P = (x,—y) (reflection across the z-axis). We define P + (—P) = O.

3. If P and @ have different z-coordinates, then a line through P and () intersects E in exactly one more
point R, unless the line is tangent to P in which case we take R = P, or tangent to () in which case
we take R = Q. We define P + Q = —R.

4. If P = @, then the line tangent to P intersects E in exactly one other point R. We define P + P =
2P = —R.

The following graphs illustrate two typical elliptic curves over R and the general case of point addition.

- —

o
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Formulas for point addition can be found by computing the third intersection point R.

e The line through P and @ has equation y = Az + 8, where A = (y2 — y1)/(z2 — z1) and 8 = y1 — Azy.
e To find intersection points, substitute y = Az + 8 into the equation for £ and solve for .
e The z coordinates of the three intersection points, o1, T2, and x3 are the roots of z° — (Az+3)? +ax +b.
e 71 + x> + x3 = A? (property of roots of monic polys) so 3 = A2 — z; — x5
Thus, for char(F) # 2,3 and E : Y2 = X3 + aX + b, we obtain (z1,¥1) + (72, y2) = (x3,y3) where
L2 P #£Q

IL'3:)\2—.’L‘1—.'L'2, y3:}\(.'1:1—.'113)—y1, A= §22_z1 .
St it P =Q.

Example 8.1. P = (-3,9) and Q = (—2,8) are points on Y2 = X® — 36X. P+ @Q = (6,0) and 2P =
(25/4,—35/8) (both are also on the curve).

Definition 8.4. Let P be a point on E(F) and n € N. Define nP = P+ P + ... P (P added to itself n
times).

8.6.2 Elliptic Curves in Cryptography

Consider E(F,) where F, is the finite field of ¢ elements. Then |E(F,)| is finite, as there are only ¢ possible
values for each point coordinate. A theorem of Hasse states

g+1-2/3<|EF,)| <q+1+2/q
i.e., |[E(F,)| is roughly as large as gq.

The geometric analogue of point addition does not carry over to the finite field case, but the algebraic
formulas still work. Thus, E(F,) is a finite abelian group under point addition.

Elliptic curves over [, where p is a large prime admit efficient software implementations. The formulas are
the same as above if char(F,) > 3.
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Example 8.2. Let E: Y2 = X3+ X + 1. Then P = (3,10) and Q = (9,7) are both points in E(Fa3). We
have P+ @ = (17,20) and 2P = (7,12).

Elliptic curves over GF(2™) are attractive because they admit efficient hardware implementations. If E :
Y2+ XY = X3 + aX? + b (the non-supersingular case) the formulas for addition are
2 Y2 + Y1
T3 =N +A+a+z+732, ys=Aw1 —23) +23+7y1, A= "
o + X1

and the doubling formulas are

.’173:)\2+)\+Cl, y3:$%+()\+1).’173, /\:.’171—}—1';—1
1

Since E(IF;) is a finite abelian group under point addition, it can be used in any generic protocol like Diffie-
Hellman or El Gamal. The additive variant of ¢* is computing P, which can also be done efficiently with
the binary exponentiation algorithm. The corresponding discrete logarithm problem is to compute z given
points P and zP.

There is a polynomial-time algorithm for computing |E(F, )| due to Schoof (Math Comp 1985). In practice,
|E(F,)| can be computed for ¢ up to several hundred digits, allowing elliptic curves to be used easily in
signature schemes.

Except for a few special cases, the best-known algorithms for solving the elliptic curve discrete logarithm
problem are exponential in Ig g, namely O(,/q). Some special cases:

o |E(F,)||¢" —1 for “small” i — Weil and Tate pairing reduce the ECDLP to DLP in F:.
e |E(F,)| = ¢ — anomolous curve, ECDLP reduces to DLP in F,.

e Fynm — Weil descent may reduce ECDLP to DLP on a hyperelliptic curve (which under certain
conditions is subexponential)



Week 9

Key Management and Authentication

We have seen that symmetric cryptography is well-suited for providing

e confidentiality (bulk encryption)

e data integrity (hash function, MAC)
and public-key cryptography for

e data origin authentication (digital signatures)

e shared secret key agreement (key exchange)

Most cryptographic systems are hybrid systems which use both symmetric and asymmetric techniques to
provide the above services.

We have seen symmetric and asymmetric primitives which accomplish all four of these tasks and are secure
in the presence of passive adversaries. Problems arise when adversaries are assumed to be active.

Example 9.1. Consider the following simple PKC-based key exchange protocol:

1. A randomly selects a symmetric key K.

2. A encrypts K using B’s public key and sends Eg(K) to B.

3. B computes K = Dp(Ep(K)).
If B uses any of the public-key cryptosystems we have seen (eg. RSA, El Gamal) then this is secure against
passive attacks. However, C can impersonate B by substituting his public key for B’s, thereby acquiring K.

Example 9.2. Impersonation can also be used to forge digital signatures. If C convinces B that his public
key belongs to A, then B will attempt to verify signatures from A using C’s public key.

Example 9.3. A similar man-in-the-middle attack can be mounted against Diffie-Hellman if an active
adversary substitutes his own g* and g¥ values for those sent by A and B.

To address these problems, it is necessary for A and B to be able to verify the authenticity of their respective
public keys.
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9.1 Public-Key Infrastructures

A public-key infrastructure (PKI) consists of a set of techniques and procedures supporting key management
for public-key cryptography. PKI supports:

e initialization of system users,
e generation, distribution/authentication, and installation of public and private keys,
e controlling the use of keys (eg. life cycles of session keys, public and private keys),

e update, revocation, and destruction of keys (eg. managing compromise of private keys),

storage, backup/recovery, and archival of keys (eg. maintaining an audit trail).

We will focus on mechanisms for distribution and authentication of public keys. The vast majority of key
distribution systems involve a trusted third party, although we will see see one example (PGP secure email)
that uses peer authentication.

Some possible methods for public key authentication:

1. Point-to-point delivery over a trusted channel such as personal exchange, registered mail, courier, etc.
Problems: slow, inconvenient. potentially expensive.

2. Direct access to a trusted public file (public-key repository). Advantage: no user interaction. Problems:

e The repository must be secure and tamper-proof (otherwise impersonation is still possible),

e Users must have a secure channel (see Point 1) to initially register their public keys.

3. An on-line trusted server dispenses user’s public keys on request. The server signs the transmitted
keys with its private key. Problems:

e all users must know the server’s public verification key,
e the trusted server must be online and may become a bottleneck,
e 3 communication link must be established with both the server and the intended recipient

e the server’s public-key database may still be subject to tampering.
4. Off-line server and certificates (certification authorities),

5. Use of systems implicitly guaranteeing authenticity of public parameters (identity-based systems).

9.1.1 Certification Authorities

Definition 9.1. A public-key certificate is a data structure consisting of a data part (containing at least
user identification and the corresponding public key) and a signature part consisting of the digital signature
of a certification authority over the data part.

A certificate may also include information such as:

e A time-stamp indicating the currency of the certificate (to facilitate key changing and revocation),
e Additional information about the key (algorithm, intended use),
e Key status (for revocation),

e Signature verification information (CA’s name, signature algorithm used)
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Definition 9.2. A certification authority (CA) is a trusted third party whose signature on a certificate
vouches for the authenticity of the public key bound to the subject entity.

Idea: CA issues public-key certificates that may be verified off-line, i.e., users may exchange authentic public
keys without having to contact the CA.

B uses a public-key certificate to obtain the authentic public key of A as follows:

1. (One-time) acquire the authentic public key of the CA.

2. Acquire a public-key certificate corresponding to A. This may be over an insecure channel such as a
central database, or even directly from A.

3. Verify the authenticity of the public key:

(a) Verify the currency of the certificate using the time-stamp,
(b) Verify the signature on A’s certificate using CA’s public key,
(c) Verify that the certificate has not been revoked.

4. If all the checks succeed, accept the public key in the certificate as A’s public key.
Requirements of the scheme:

1. Any participant can read a certificate to determine the name and public key,
2. Any participant can verify that the certificate originated from the CA and is not counterfeit,
3. Only the CA can create and update certificates,

4. Any participant can verify the currency of the certificate.

Users must register their public keys with the CA in a secure manner (typically in person). The CA’s public
key (required for certificate verification) may be obtained at that time. If the user generates his own keys,
the CA must verify the source of the keys. In all cases, the CA must verify the binding between the public
and private keys.

Users whose private keys are compromised may have the CA revoke the old certificate (via the time stamp
or other fields) and issue a new certificate containing a new public key. This is analogous to canceling a
credit card.

Note. X.509 is a standard for such a certificate-based authentication scheme. VeriSign is one example of an
online CA service that uses X.509 certificates. Users request certificates for their public keys via the VeriSign
website. Certificates are issued with three authentication levels:

e Class 1 — User’s email address is confirmed by sending a PIN and instructions to pick up the certificate.

e Class 2 — Class 1, plus user’s application information is compared with an online consumer database.
Confirmation is sent to the user-specified postal address, indicating that a certificate has been issued.

e (Class 3 — User must prove his identity by providing notarized credentials or applying in person.
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9.1.2 Identity-Based Cryptography

Idea: bind public keys directly to a user’s identity

Definition 9.3. An identity-based cryptosystem (ID-based) is a PKC in which an entity’s public identification
information (unique name) plays the role of its public key. The unique name is used by a trusted authority
T to compute the entity’s corresponding private key.

The public key is typically constructed from the unique name using some publicly known function.

Motivation — ideal mail system. Knowledge of a person’s name alone is sufficient to

e send mail which can be read by that person only (secure),

e allow verification of signatures that person alone could have produced.
The binding of a unique entity name to the public key eliminates the need need for public key authentication.
If the wrong public user data is used, the cryptographic transformations fail. Advantages:

e users need not exchange keys,

e public directories (files of public keys or certificates) need not be kept,

e the trusted authority is only required during the set-up phase (to compute private keys)
Key revocation may be addressed by incorporating a key validity period into the ID string used to compute

a user’s public key.

Feige, Fiat, and Shamir (Journal of Cryptology 1998) proposed an ID-based signature scheme based on
computing square roots modulo pqg (p and ¢ large primes).

Boneh and Franklin (CRYPTO 2001) proposed the first practical ID-based encryption scheme using the Weil
pairing on elliptic curves.
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Cryptography in Practice

10.1 Email Security and PGP

PGP — Pretty Good Privacy, secure email system developed by Phil Zimmerman. Features:

Free world-wide availability, runs on most platforms,

Use best available cryptographic primitives,

Not developed by government nor standards organization,

Compatible with most email programs,

Automatically segments large messages (to accommodate message size limitations).

e Users may have multiple public keys. Each key is identified by its 64 low-order bits (key ID, denoted
IDg).

PGP provides the following cryptographic services:

o Authentication (using digital signatures). DSS/SHA (1024 bit keys) and RSA/SHA (768 to 3072 bit
keys) are supported.

e Confidentiality (using 64-bit CFB symmetric encryption). CAST-128, IDEA (128-bit), and 3DES
(168-bit) are supported for encryption, El Gamal and RSA for key exchange.

A sends a message M (authenticated and encrypted):

1. Compute signature S = D 4(H(M)) on the SHA-1 hash value of M
2. Compress (S, M) (using ZIP)
3. Generate a random session key K to be used to encrypt only this message,

4. Encrypt a time-stamp 7', key ID of A’s public key, the signature S, and M, to obtain the ciphertext
C= EK(TalDK(EA)Jsa M)

5. Encrypt K using B’s public key and send (IDk(Eg), Eg(K),C)
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B decrypts the session key K = Dp(Eg(K)) recovers the signature S and message M using Dx(C) =
(T,IDk(E4),S, M), and verifies the authenticity of the message by comparing H (M) with E4(S).

Some features:

e The key IDs allow A and B to use the correct public keys when they have multiple public/private key
pairs.

e The use of time-stamps prevents replay attacks (an adversary resends an intercepted valid signature
at a later time).

e Session keys are not needed — each symmetric key is used to encrypt only one message.

10.1.1 Key Management in PGP

Three types of keys:

e Session keys (one-time message encryption),
e Public/private keys (user’s public/private key pairs, other users’ known public keys)

e Pass phrase (for encrypting key ring files)

Random and Pseudorandom Numbers

Session keys are generated pseudorandomly on demand as follows (based on ANSI X9.17 block cipher based
pseudorandom number generation):

e Compute random 128-bit key K and random 64-bit IV X,
e Compute pseudorandom 64-bit blocks X; (i =1,2,...) as Ex(X;-1).

e Use two pseudorandom blocks X;, X;;1 as the 128-bit block cipher key.

A 256-byte buffer of true random data is used to seed the pseudorandom number generator and to generate
public key pairs. The random data is generated by measuring the latency between key strokes and their
content.

Key Rings and Authentication

A user’s public/private key pairs are stored in a private key ring. Each entry (corresponding to one pub-
lic/private key pair) contains:

e time-stamp,

e key ID,

public key (generated by PGP),

private key (generated by PGP),

user ID (different ID’s, typically email addresses, may be assigned to different public/private keys)
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The private key ring file is maintained and stored by the user. The private keys are stored in encrypted form
(block cipher). The access key is the SHA-1 hash value of a secret pass phrase.

Others’ public keys known to a user are stored in a public key ring (maintained and stored by the user). An
entry (corresponding to one known public key) contains:

e time-stamp,
e key ID,
e public key,

e owner trust field — is this public key trusted to sign other certificates? User-assigned — higher value
indicates higher degree of trust.

e user ID (email address),

e key legitimacy — higher value indicates higher trust in the binding of public key to user ID. Computed
by PGP as a function of signature trust fields,

e digital signatures — zero or more signatures, each vouches for the authenticity of the key to ID binding
of this public key,

e signature trust field — indicates the degree of trust in one signature. Higher value indicates a higher
degree of trust in the signature’s author. The key legitimacy field is a function of the signature trust
fields.

Other users’ authentic public keys can be obtained using secure public channels, CA’s, etc..., plus from a
mutually trusted individual. PGP provides a mechanism for quantifying trust.

A inserts a new public key (certificate with attached signatures) into his public key ring as follows:

e The owner trust field is assigned (byte value).

— If the public key belongs to A, a value of “ultimate trust” is assigned.

7«

— Otherwise, user selects one of “unknown,” “untrusted,” “marginal trust,” or “complete trust.”

e Signature trust fields are assigned (byte values). For each attached signature:

— If the signature’s author is unknown, the signature trust field is assigned “unknown user.”

— Otherwise, the signature trust field is assigned the corresponding owner trust field.
e The key legitimacy field is evaluated based on the signature trust fields.

— If at least one signature trust field is “ultimate trust,” key legitimacy is assigned “complete.”

— Otherwise, key legitimacy is a weighted sum — 1/X if signature trust field is always trusted, 1/Y
if usually trusted (X and Y user-configurable parameters).

— If total weight is > 1, key legitimacy is assigned “complete” (at least X always trusted signatures
or Y usually trusted). Otherwise, key legitimacy is “not trusted” or “marginally trusted.”

This scheme makes it possible to trust the authenticity of a user’s public key, but not to trust the user to
sign other’s keys.

A user can revoke his public keys by issuing a signed certificate (with a revocation flag set) and sending it
to as many users as possible.
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10.1.2 S/MIME

IETF standardization track. Similar to PGP in functionality and cryptographic protocols supported. Only
CA’s can create certificates (using X.509 version 3), and users must register their public keys.

10.2 Web Security

Challenges to web security:

o very widely used, often as highly-visible outlets for information (motivation to break)

two-way (interactive) traffic (servers can be attacked)

by subverting a web server it may be possible to access an organization’s entire computer network

web software is very complex but easy to use — low level security risks are often buried

e anyone (regardless of security training) can use the web
Threats to web security:

o Confidentiality

— eavesdropping
— theft of information/data
— information about client identities

e Integrity
— modification of data, memory, or messages
e Authentication

— impersonating legitimate users

— data forgery

e Denial of service
— flooding machine with bogus threats
— filling up disk or memory

Approaches to web security:

1. Network level (IPsec)

e general-purpose secure modification of the low-level internet protocol (IP)
e transparent to applications and end-users

2. Transport level (SSL or TLS)

e can be transparent to applications or built-in (eg. Netscape and Internet Explorer)
e SSL (secure socket layer) widely used, also TLS (transport layer security)

3. Application level (Kerberos, PGP, SET)

e security infrastructure tailored to the specific application
e eg. SET — secure electronic transaction (for electronic commerce)

In all cases, the implementation should allow for easy interchange of the cryptographic primitives (in case
one is broken).
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10.2.1 Secure Socket Layer (SSL)

Developed by Netscape, became IETF standard TLS (transport layer security). Makes use of TCP to provide
a reliable end-to-end secure service.
Two layers of protocols:
e SSL Record protocol — provides basic security services (confidentiality and message integrity) to
upper-level protocols (eg. HT'TP)
e SSL Handshake protocol, SSL Change Cipher Spec protocol, SSL Alert protocol — upper-level proto-

cols used to set up and manage a secure connection

Connection — a peer-to-peer communication channel (transport). The SSL record protocol is used to secure
the communications. A connection state is defined by parameters including MAC keys, cipher keys, and IVs
(for CBC encryption). Each connection belongs to a session.

Session — association between client and server for which a set of cryptographic parameters are defined.
The SSL Handshake protocol is used to create a session (negotiate cryptographic parameters, authenticate
parties). A session state is defined by parameters including the cipher to be used for connections and an
X.509.v3 certificate of its peer.

SSL Record Protocol
Application data is sent via a connection as follows:

1. The data is broken into 16384-byte blocks.

Each block is compressed.

A MAC is computed for each block and appended.
The block plus MAC is encrypted.

R S

An SSL record header is attached and the block is sent to the peer.

The MAC is performed using a combination of a shared secret key and SHA-1 or MD5 (TLS uses HMAC).
IDEA-128, RC2-40, DES-40, DES, 3DES, and Fortezza are supported for block cipher encryption.

RC4-40 and RC4-128 are supported for stream cipher encryption.

SSL Handshake Protocol

Used to initialize a session:

e Client and server authenticate each other (via X.509.v3 certificates)

e Encryption, MAC, and required keys are negotiated

No application data is sent until the handshake is successfully executed.

Phase 1 — Establish Security Capabilities

e Client sends a “client-hello” message to the server containing:

— highest SSL version understood by the client
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— time stamp and 28 random bytes (used as nonces to prevent replay attacks

— CipherSuite — cryptographic algorithms supported by the client listed in decreasing order of
preference. Each entry contains a key exchange algorithm and a CipherSpec (encryption and
MAC specifications)

e Server responds with a “server-hello” message containing the same information.

— SSL version is the highest mutually-supported version
— CipherSuite contains the single cipher suite selected from the client’s list

Key exchange algorithms supported:

o RSA,

Fixed Diffie-Hellman — g* contained in a certificate,

Ephemeral Diffie-Hellman — ¢* randomly generated and signed by each peer. For one-time secret
keys.

Base Diffie-Hellman (no authentication),

Fortezza

Phase 2 — Server Authentication and Key Exchange

Server sends a “certificate-message” containing its certificate (if authentication is required)

Server sends a “server-key-exchange” message to initiate key exchange. Not required if RSA, Fixed
Diffie-Hellman.

Server sends a “certificate-request-message” if client authentication is required. This message specifies
the type of signature algorithm to be used and a list of acceptable certification authorities.

Server sends a “server-done” message and wait for the client’s response.

RSA, DSS, and Fortezza are supported for signatures.

Phase 3 — Client Authentication and Key Exchange
If the server’s certificate is valid and the “server-hello” message is valid, the client sends the following
messages (if necessary):

e A “certificate-message” containing its certificate or a “no-certificate” alert.
e A “client-key-exchange” message containing the clients response for the key exchange protocol.

e A “certificate-verify” message containing a signature on the client key exchange message (if required
by the key exchange protocol)

Phase 4 — Finish

e Client sends a “change-cipher-spec” message and activates the algorithms in the CipherSpec
e Client sends a “finished” message encrypted with the new CipherSpec
e Server sends a “change-cipher-spec” message and activates the same CipherSpec

e Server sends a “finished” message encrypted with the new CipherSpec

After this protocol, all the information required to secure connections has been exchanged and application
data may be transferred.



