1. (a) $\mathrm{Ho}: \mu=1100$

Ha: $\mu<1100$
(b) RHo if Zcalc <-1.645
(c) $\mathrm{Zcalc}=-2.69$

Dec: RHo, -2.69<-1.645
Conclusion: At the 5\% significance level, there's a drop in the average daily production.
(d) P -value $=\mathrm{P}(\mathrm{z}<-2.69)=.0036$
2. (a) (i) $\mathrm{Ho}_{\mathrm{o}} \mu_{\mathrm{d}}=0$

Ha: $\mu_{\mathrm{d}}>0 \quad$ (B -A$)$
RHo if tcalc $>2.447(\mathrm{df}=6, \alpha=.025)$
tcalc $=3.4382 \quad\left(\bar{d}=3.8571, s_{d}=2.9681\right.$
Dec: RHo, 3.4382>2.447
Conclusion: At the 2.5% significance level, OSHA has been effective in reducing lost time accidents
Note: you could have done a left tailed test, then you would make all the values negative.
(ii) P -value $=\mathrm{P}(\mathrm{t}>3.4382)=.0064$ (computer)
$0.005<\mathrm{p}$-value <0.01 (tables)
(b) Wilcoxon Signed-Rank test

Ho:the distributions are the same for accidents before and after OSHA
Ha: There are more accidents before OSHA than after
$\mathrm{W}+=26.5 \mathrm{~W}-=1.5$ (B-A)
RHo is $\mathrm{W} \leq 2$
Dec: RHo , $1.5<2$
Conclusion: At the 2.5% significance level, same as above
3. (a) Ho: January indicator is independent of market prices the rest of the year Ha: January indicator is not independent of market prices the rest of the year (it can be used to predict the market prices for the rest of the year)
RHo is χ^{2} calc $>3.841(\mathrm{df}=1, \alpha=.05)$
χ^{2} calc $=3.381$
Dec: Fail to RHo $3.381<3.841$
Conclusion: At the 5% significance level, January indicator is independent of market prices for the rest of the year. It can not be used to predict the market prices for the rest of the year.

Could also do a two population proportions test.
Rho if \mid zcalc $\mid>1.96, \mathrm{p}^{\wedge}$ pooled $=.6389, \mathrm{P}^{\wedge} 1=33 / 46=.7174, \mathrm{p}^{\wedge} 2=13 / 36=.5$, Z calc $=1.8447$
Dec: Fail to Rho $1.8447<1.96$ and >-1.96.
Conclusion: same as above.
(b) p -value $=\mathrm{P}\left(\chi^{2}>3.381\right)=.0660$ (computer)
$05<$ p-value $<.10$ (tables)
or Proportions: P -value $=2 \times \mathrm{P}(\mathrm{z}>1.8447)=.065$
4. $\mathrm{n}_{\mathrm{s}}=\mathrm{n}_{\mathrm{c}}=\mathrm{n}, \mathrm{Z} \alpha / 2=1.96$, error $=1 \quad \sigma_{\mathrm{s}}{ }^{2}=\sigma_{\mathrm{c}}{ }^{2}=9$

$$
\begin{aligned}
& \quad \text { error }=z_{\alpha / 2} \sqrt{\frac{\sigma_{s}^{2}}{n_{s}}+\frac{\sigma_{c}^{2}}{n_{c}}} \quad 1=1.96 \sqrt{\frac{9}{n}+\frac{9}{n}} \\
& \mathrm{n}=69.1488 \sim 70
\end{aligned}
$$

5. Ho: All choices are equally likely

Ha: Not all choices are equally likely
RHo is χ^{2} calc $>9.48773(\mathrm{df}=4, \alpha=.05)$
χ^{2} calc $=8.857$
Dec: Fail to RHo, $8.857<9.48773$
Conclusion: At the 5% significance level, there is no indication that all answers are not equally likely.
6.

	1 way ANOVA			
Source	SS	DF	MS	F
Treatment	1.7267	2	.8634	.6858
$\frac{\text { Error }}{\text { Total }}$	7.5533	$\underline{6}$	1.2589	
	9.28	8		

Ho: Designs are the same with regard to wear
Ha: Designs are not the same with regard to wear
Rho if Fcalc > $5.143(\mathrm{df}=2,6 \alpha=.05)$ (one-way ANOVA)
Fcalc $=0.686$ (computer)
Dec: Fail to RHo, $.686<5.143$
Conclusion: at the 5% significance level, there appears to be no significant difference in wear of the different designs.
7.

Parameter	Value	St.Dev	T-ratio
Intercept	2.368421	2.070594	1.143837
Slope	1.002193	0.137856	7.269860

$\mathrm{S}=\mathbf{1 . 3 1 6 5 0 6}(\sqrt{M S E}) \quad$ Rsquared= $\mathbf{0 . 9 4 6 2 8 6}$ (SSR/SST)
ANOVA TABLE

Source	DF	SS	MS	F
Regression	$\mathbf{1}$	$\mathbf{9 1 . 6 0 0 4 3 9}$	91.600439	$\mathbf{5 2 . 8 5 0 8 6 5}$
Residual	$\mathbf{3}$	$\mathbf{5 . 1 9 9 5 6 1}$	$\mathbf{1 . 7 3 3 1 8 7}$	
Total	$\mathbf{4}$	$\mathbf{9 6 . 8 0 0}$		

(b) $\hat{y}=2.368421+1.002193(x)$
(c) $\mathrm{s}=1.316506$
(d) $\mathrm{Ho}: \beta_{1}=0$

Ha: $\beta_{1} \neq 0$
RHo if tcalc <-3.182 or $>3.182(\mathrm{df}=3, \alpha=.05)$
Tcalc $=1.002193-0 / 0.1379856=7.27$
Dec: RHo, 7.27>3.182
Conclusion: At the 5\% significance level, there is a linear association between sales and test score
(e) $\mathrm{Ho}: \beta_{1}=0$

Ha: $\beta_{1} \neq 0$
RHo if Fcalc $>10.12(\mathrm{df}=1,3 \quad \alpha=.05)$
Fcalc $=52.851\left(\sim 7.27^{2}=\right.$ tcalc $\left.^{2}\right)$
Dec: RHo, 52.851>10.12
Conclusion: At the 5% significance level, there is a linear association between sales and test score
(f) $r^{2}=.946286$ (coefficient of determination), $r=.972897 .28 \%$ of the variability in y is explained by the regression model. This is quite high.
(g) $\hat{y} \pm t_{\alpha / 2} S \sqrt{\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S X X}} 17.4 \pm 5.841(1.3165) \sqrt{\frac{1}{5}+\frac{(15-14.4)^{2}}{91.2}}$
$17.4 \pm 3.47(13.93,20.87)$ in $\$ 1000$
(h) $\hat{y} \pm t_{\alpha / 2} S \sqrt{\frac{1}{n}+1+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S x x}} 17.4 \pm 5.841(1.3165) \sqrt{\frac{1}{5}+1+\frac{(15-14.4)^{2}}{91.2}}$
$17.4 \pm 8.44(8.96,25.84)$ in $\$ 1000$
8. Paired data

Wilcoxon Signed-Rank test
Ho:the distributions are the same for dinner spending
Ha: the distributions are not the same for dinner spending
$\mathrm{W}+=23 \mathrm{~W}-=5$ (man- womean) $\mathrm{W}=5$
RHo if $\mathrm{W} \leq 2$
Dec: Fail to RHo, $5>2$
Conclusion: At the 5% significance level, there appears to be no significant difference in spending for the males and females.
9. Kruskall Wallis test

Ho: the distributions are the same for the 3 stores
Ha: distributions are not all the same for the 3 stores.
Rho if KW > $5.991\left(\chi^{2} .05,2\right)$
$\mathrm{KW}=\frac{12}{15(16)}\left(\frac{19.5^{2}}{5}+\frac{40.5^{2}}{5}+\frac{60^{2}}{5}\right)-3(16)=8.205$
Dec: RHo, $8.205>5.991$

Conclusion: At the 5\% significance level, there appears to be no significant difference in spending for the 3 stores..
10. (a) (i) Ho: $\mu \leq 1.5$

На: $\mu>1.5$
$\mathrm{Z}=\frac{1.91-1.5}{2 / \sqrt{100}}=2.05 \quad \mathrm{P}(\mathrm{z}>2.05)=0.0202$
(ii) $\mathrm{Z}=\frac{1.91-1.7}{2 / \sqrt{100}}=1.05 \mathrm{P}(\mathrm{z}<1.05)=0.8531$
(b)(i) $\mathrm{n}=\left(\frac{2.326(2)}{.233}\right)^{2}=398.6 \sim 399$
(ii) $1.76 \pm 0.233(1.527,1.993)$

The CI is above 1.5 indicating that the advertisement is not true
11. (a) Ho: $\mathrm{p} \leq .5$

На: $p>.5$
(b) (i) $1.645=\frac{\hat{p}-.5}{\sqrt{(.5)(.5) / 400}} \hat{p}=.541125$

$$
\hat{p}=x / n \hat{p} n=x \quad x=400(.54125)=216.45 \sim 217
$$

(ii) z calc $=1 \mathrm{P}(\mathrm{z}>1)=.1587$
12. (a) (i) $\mathrm{Ho}: \mu_{\mathrm{s}} \leq \mu_{\mathrm{n}}$ На: $\mu_{\mathrm{s}}>\mu_{\mathrm{n}}$

RHo if tcalc $>2.821(\mathrm{df}=9, \alpha=.01$
$\mathrm{Sp}^{2}=5.2775$
tcalc $=10.42$
Dec: RHo, 10.42>2.821
Conclusion: At the 1% significance, the corrosion is less for the new paint
(ii) $\mathrm{Ho}: \mu_{\mathrm{s}} \leq \mu_{\mathrm{n}}$

На: $\mu_{\mathrm{s}}>\mu_{\mathrm{n}}$
RHo if tcalc $>3.365(\mathrm{df}=5, \alpha=.01)$
tcalc $=9.739$
Dec: RHo 9.739>3.365
Conclusion: At the 1% significance, the corrosion is less for the new paint
(b) Ho: The corrosion is the same for both paints

Ha: The corrosion is higher for the old paint
RHo if $\mathrm{M} \geq 40 \mathrm{n} 1=5, \mathrm{n} 2=6 \alpha=.05$
$\mathrm{M}=45$
Dec: RHo, 45>40
Conclusion: Same as before
13. (a) Ho: $\mu \leq 3$

На: $\mu>3$
RHo if tcalc>2.463 $(\mathrm{df}=29, \alpha=.01)$
tcalc $=5.921$
Dec: RHo, 5.912>2.463
Conclusion: At the 1% significance, the response time exceeds 3 seconds on average
(b) p -value $=\mathrm{P}(\mathrm{t}>5.921)=0$ (computer)

$$
\text { p-value }<.005 \text { (tables) }
$$

(c) Ho: $\sigma \geq .5$

На: $\sigma<.5$
RHo if χ^{2} calc $<17.7083(\mathrm{df}=29, \alpha=.05)$
χ^{2} calc $=15.8804$
Dec: RHo, $15.8804<17.7083$
Conclusion: At the 5% significance, the standard deviation is lower than 0.5
(d) p -value $=\mathrm{P}\left(\chi^{2}>15.8804\right)=.0231$ (computer)

$$
.01<\mathrm{p} \text {-value }<.025
$$

14. (a) $(.547-.252) \pm 1.96 \sqrt{\frac{.547(.453)}{100}+\frac{.252(.748)}{100}} \quad .295 \pm .129 \quad(.166, .424)$
(b) Since zero does not fall in the 95% CI, this indicates that the $\%$ in 1982 is greater than the percentage now.
(c) Ho: $\mathrm{p} 82 \leq$ pnow

Ha: p82> pnow

15. Source	SS	df	MS	F
Trt	45.6	$\mathbf{2}$	$\mathbf{2 2 . 8}$	$\mathbf{6}$
Block	$\mathbf{6 0}$	$\mathbf{4}$	15	$\mathbf{3 . 9 4 7}$
error	$\mathbf{3 0 . 4}$	$\mathbf{8}$	$\mathbf{3 . 7 8}$	

(test of blocks)
Ho: no difference between times
Ha: Mean weights not the same for all times
Rho is Fblock> $3.838(\mathrm{df}=4,8, \alpha=.05)$
Fblock $=3.947$
Dec:RHo, 3.947>3.838
Conclusion: At the 5\% significance level, mean weights are not the same for all times.
(test of treatments)
Ho: no difference between the processes
Ha: not all processes are the same
Rho if Ftrt> $4.459(\mathrm{df}=2,8, \alpha=.05)$

Ftrt $=6$
Dec:RHo, 6>4.459
Conclusion: At the 5\% significance level, not all processes are the same.
16. Но: $\mu \leq 15$

На: $\mu>15$
Zcalc $=3.426$
p -value $=\mathrm{P}(\mathrm{z}>3.426)=.0003$
Since p-value is small, we RHo and conclude that the advertisement is most likely false.
17. Но: $\sigma \leq .95$

На; $\sigma>.95$
RHo if χ^{2} calc $>18.307(\mathrm{df}=10, \alpha=.05)$
$\chi^{2} \mathrm{calc}=17.871$
Dec: Fail to RHo
Conclusion: At the 5% significance, the standard deviation is not greater than 0.95
18. (a) $\mathrm{Ho}: \mu \leq 100,000$

На: $\mu>100,000$
RHo if tcalc $>1.753(\mathrm{df}=15, \alpha=.05)$
tcalc $=1.867$
Dec:RHo
Conclusion: At the 5% significance level, the firm's claim is false ($\mu>\$ 100,000$)
(b) p -value $=\mathrm{P}(\mathrm{t}>1.867)=.0408$ (computer)
$.025<$ p-value $<.05$ (tables)
19. (a) Test for equal population variances.

Ho: $\sigma^{2}{ }_{1}=\sigma^{2}{ }_{2}$
На: $\sigma^{2}{ }_{1} \neq \sigma^{2}{ }_{2}$
RHo if Fcalc > 1.61 (using 40 and 120 df because the table can't read 49 and 99 df)
Or Fcalc > 1.74 (using 40 and 60 df because the table can't read 49 and 99 df)
Fcalc $=1.6^{2} / .8^{2}=4$
Dec RHo
Conc: At the 5\% significance level, the variances are not the same.
We do a non-pooled confidence interval
$D f=61 \quad t \sim 2$ (since it's close to 10 df) or we could use $\mathrm{z}=1.96$ since the sample size is large.

Using z :

$$
\left(4.6 \pm 1.96 \sqrt{\frac{.8^{2}}{100}+\frac{1.6^{2}}{50}} \quad 4.6 \pm .47(4.13,5.07)\right.
$$

$4.6 \pm 2 \sqrt{\frac{8^{2}}{100}+\frac{1.6^{2}}{50}}$
$4.6 \pm .48(4.12,5.08)$
(b) Yes there is a difference because the CI does not include zero. The mean days for female is anywhere from 4.13 to 5.07 or (4.12 to 5.08)more than males.
20. (a)(i) Ho: $\mu \geq 507.5$

На: $\mu<507.5$
(ii) tcalc $=-2.012$
(iii) p -value $=\mathrm{P}(\mathrm{t}<-2.012)=.0395$ (computer) $.025<$ p-value $<.05$ (tables)
Since p-value is small, the shop machine should be adjusted.
(b) Wilcoxon Signed Rank test

Ho: The machine is working fine
Ha : The machine is not working fine
RHo if $\mathrm{W} \leq 8(\mathrm{n}=9 \alpha=.05)$

$$
\mathrm{W}+=8.5 \mathrm{~W}-=36.5 \mathrm{~W}=8.5
$$

Dec: Fail to RHo, $8.5>8$
Conclusion: At the 5\% significance level, it appears that the machine should not be adjusted.

