FACULTY OF SCIENCE Department of Mathematics and Statistics

Statistics 327

Environmental Statistics

Sampling environmental populations. Probability distributions. Estimating distribution parameters and quantiles. Hypothesis tests. Goodness of fit tests. Detecting trends. Outlier detection. Censored data.
Course Hours: H(3-1)
Prerequisite(s): Mathematics $\underline{249}$ or $\underline{251}$ or $\underline{281}$ or Applied Mathematics 217.

Syllabus

Topics

Data collection, summarizing data, frequency distributions, relative frequency and probability, cumulative frequency and probability, means (averages), variances, standard deviations, (mean and standard deviation for grouped data)

Graphical displays of data (dot plot, stem and leaf diagram, ie Chart, bar graph, histogram) ranking data, quartiles, IQR, percentiles, box and whisker plot, introduction to probability

Probability, addition rule, Conditional probability, independence, Bayes' Rule, factorials, permutations and combinations

Bayes' Rule, Binomial and Poisson Distributions
Empirical Rule (normal curve), standardizing, normal approximation to Binomial, Central limit theorem

Determining required sample size for a population proportion, Confidence interval for a population mean (large and small samples), t -distribution, determining required sample size for a population mean

Scientific method, p-values, Type I and Type II error, selecting analyses and t-test, z-test for one population proportion z-test, t -test for one population mean, paired data F -test, Two independent samples pooled and non-pooled t-test

ANOVA, one-way multiple pooled t-tests, two-way ANOVA, ANOVA two-way replication. Tukey post hoc test for one-way ANOVA

Non-parametric tests for median, one-sample Wilcoxon, Paired Wilcoxon, Mann-Whitney, Kruskal Wallis, Freidman

Chi-square goodness-of-fit test, and independence test
Yates correction, Fisher exact test, standardizing proportions, Confidence interval for difference in two population proportions

Correlation and Regression

Number of
Hours
3Number of

3

3

3
2

3

