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The convex hull of a ball with an exterior point is called a spike (or cap). A union of 
finitely many spikes of a ball is called a spiky ball. If a spiky ball is convex, then we call it 
a cap body. In this note we upper bound the illumination numbers of 2-illuminable spiky 
balls as well as centrally symmetric cap bodies. In particular, we prove the Illumination 
Conjecture for centrally symmetric cap bodies in sufficiently large dimensions. In fact, we 
do a bit more by showing that any d-dimensional centrally symmetric cap body can be 
illuminated by < 2d directions in Euclidean d-space for d = 3, 4, 9 and d ≥ 19. Furthermore, 
we strengthen the latter result for 1-unconditionally symmetric cap bodies.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let Ed denote the d-dimensional Euclidean vector space, with inner product 〈·, ·〉 and norm ‖ · ‖ and let e1, . . . , ed be its 
standard basis. Its unit sphere centered at the origin o is Sd−1 := {x ∈Ed | ‖x‖ = 1}. A greatcircle of Sd−1 is an intersection 
of Sd−1 with a plane of Ed passing through o. Two points are called antipodes if they can be obtained as an intersection 
of Sd−1 with a line through o in Ed . If a, b ∈ Sd−1 are two points that are not antipodes, then we label the (uniquely 
determined) shortest geodesic arc of Sd−1 connecting a and b by âb. In other words, âb is the shorter circular arc with 
endpoints a and b of the greatcircle ab that passes through a and b. The length of âb is called the spherical (or angular) 
distance between a and b and it is labeled by l(âb), where 0 < l(âb) < π . The set CSd−1 [x, α] := {y ∈ Sd−1 | l(x̂,y) ≤ α} =
{y ∈ Sd−1|〈x, y〉 ≥ cosα} (resp., CSd−1(x, α) := {y ∈ Sd−1 | l(x̂,y) < α} = {y ∈ Sd−1|〈x, y〉 > cosα}) is called the closed (resp., 
open) spherical cap of angular radius α centered at x ∈ Sd−1 for 0 < α ≤ π

2 . The closed Euclidean ball of radius r centered 
at p ∈Ed is denoted by Bd[p, r] := {q ∈Ed | |p − q| ≤ r}. A d-dimensional convex body K is a compact convex subset of Ed

with non-empty interior. Then K is said to be o-symmetric if K = −K and K is called centrally symmetric if some translate of 
K is o-symmetric. A light source at a point p outside a convex body K ⊂ Ed , illuminates a point x on the boundary of K if 
the halfline originating from p and passing through x intersects the interior of K at a point not lying between p and x. The 
set of points {pi : i = 1, . . . , n} in the exterior of K is said to illuminate K if every boundary point of K is illuminated by some 
pi . The illumination number I(K) of K is the smallest n for which K can be illuminated by n point light sources. One can also 
consider illumination of K ⊂ Ed by directions instead of by exterior points. We say that a point x on the boundary of K is 
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illuminated in the direction v ∈ Sd−1 if the halfline originating from x and with direction vector v intersects the interior of 
K. The former notion of illumination was introduced by Hadwiger [15], while the latter notion is due to Boltyanski [5]. It 
may not come as a surprise that the two concepts are equivalent in the sense that a convex body K can be illuminated by 
n point sources if and only if it can be illuminated by n directions. The following conjecture of Boltyanski [5] and Hadwiger 
[15] has become a central problem of convex and discrete geometry and inspired a significant body of research.

Conjecture 1 (Illumination Conjecture). The illumination number I(K) of any d-dimensional convex body K, d ≥ 2, is at most 2d

and I(K) = 2d only if K is an affine d-cube.

While Conjecture 1 has been proved in the plane ([5], [14], [15], and [19]), it is open for dimensions larger than 2. 
On the other hand, there are numerous partial results supporting Conjecture 1 in dimensions greater than 2. For details 
we refer the interested reader to the recent survey article [4] and the references mentioned there. Here we highlight only 
the following results. Let K be an arbitrary d-dimensional convex body with d > 1. Rogers [25] (see also [26]) has proved 
that I(K) ≤ (2d

d

)
d(ln d + ln ln d + 5) = O (4d

√
d ln d). Huang, Slomka, Tkocz, and Vritsiou [16] improved this bound of Rogers 

for sufficiently large values of d to c14de−c2
√

d , where c1, c2 > 0 are universal constants. Lassak [18] improved the upper 
bound of Rogers for some small values of d to (d + 1)dd−1 − (d − 1)(d − 2)d−1. In fact, the best upper bounds for the 
illumination numbers of convex bodies in dimensions 3, 4, 5, 6 are 14 ([23]), 96, 1091, 15373 ([24]). The best upper bound 
for the illumination numbers of centrally symmetric convex bodies of Ed , d > 1 is 2dd(ln d + ln ln d + 5) proved by Rogers 
([25] and [26]). In connection with this upper bound we note that [28] proves Conjecture 1 for unit balls of 1-symmetric norms
in Rd provided that d is sufficiently large. We also mention in passing that Conjecture 1 has been confirmed for certain 
classes of convex bodies such as wide ball-bodies including convex bodies of constant width ([1], [2], [3], [8], [27]), convex bodies 
of Helly dimension 2 ([7]), and belt-bodies including zonoids and zonotopes ([6]). The present article has been motivated by 
the investigations in [21] and it aims at proving Conjecture 1 for sufficiently high dimensional centrally symmetric cap bodies
studied under the name centrally symmetric spiky balls in [21]. Actually, we do a bit more. The details are as follows.

Definition 1. Let Bd := Bd[o, 1] and let x1, . . . , xn ∈Ed \ Bd . Then

SpBd [x1, . . . ,xn] :=
n⋃

i=1

conv(Bd ∪ {xi})

is called a spiky (unit) ball, where conv(·) refers to the convex hull of the corresponding set. If xi /∈ ⋃
1≤ j≤n, j �=i conv(Bd ∪

{x j}) holds for some 1 ≤ i ≤ n, then xi is called a vertex of SpBd [x1, . . . , xn]. A point x on the boundary of the spiky ball 
SpBd [x1, . . . , xn] is illuminated in the direction v ∈ Sd−1 if the halfline originating from x and with direction vector v inter-
sects the interior of SpBd [x1, . . . , xn] in points arbitrarily close to x. Furthermore, the set of directions {vi : i = 1, . . . , m} ⊂
Sd−1 is said to illuminate SpBd [x1, . . . , xn] if every boundary point of SpBd [x1, . . . , xn] is illuminated by some vi . The illu-
mination number I(SpBd [x1, . . . , xn]) of SpBd [x1, . . . , xn] is the smallest m for which SpBd [x1, . . . , xn] can be illuminated by 
m directions. Moreover, we say that the spiky ball SpBd [x1, . . . , xn] with vertices x1, . . . , xn is 2-illuminable if any two of 
its vertices can be simultaneously illuminated by a direction in Ed . Finally, SpBd [x1, . . . , xn] is called a cap body if it is a 
convex body in Ed . (See Fig. 1.)

We note that cap bodies were first studied by Minkowski [20]. On the other hand, the family of 2-illuminable spiky balls 
seems to be a new family of spiky balls that have not been investigated before.

Definition 2. If 0 < α ≤ π
2 , then let NSd−1(α) denote the minimum number of closed spherical caps of angular radius α

that can cover Sd−1.

Our first result upper bounds the illumination numbers of 2-illuminable spiky balls. We note that spiky balls without 
being 2-illuminable can have arbitrarily large illumination numbers.

Theorem 2. Suppose that SpBd [x1, . . . , xn] is a 2-illuminable spiky ball with vertices x1, . . . , xn in Ed.

(i) If d = 2, then I(SpB2 [x1, . . . , xn]) = 3.
(ii) If d = 3, then I(SpB3 [x1, . . . , xn]) ≤ 5.
(iii) If d ≥ 4, then I(SpBd [x1, . . . , xn]) ≤ 3 + NSd−2(

π
6 ).

Corollary 3. Let SpBd [x1, . . . , xn] be a 2-illuminable spiky ball with vertices x1, . . . , xn in Ed, d ≥ 4. If d = 4, then I(SpB4 [x1, . . . ,
xn]) ≤ 23. If d ≥ 5, then

I(SpBd [x1, . . . ,xn]) ≤ 3 + 2d−2
√

2π(d − 1)

(
1 + 3 ln ln(d − 2) + 3

)
(d − 2) ln(d − 2) < 2d+1d

3
2 ln d.
2 ln(d − 2) ln(d − 2)

2
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Fig. 1. Centrally symmetric spiky balls.

Remark 4. Note that an arbitrary spiky ball SpBd [x1, . . . , xn] is starshaped with respect to o and even if SpBd [x1, . . . , xn] is 
2-illuminable it is not necessarily a convex set. Still, one may wonder whether any d-dimensional 2-illuminable spiky ball 
can be illuminated by less than 2d directions in Ed , d ≥ 4. In general, one can introduce the family of k-illuminable spiky 
balls for given k ≥ 2 by a natural extension of Definition 1 and then ask whether Conjecture 1 holds for that family. The 
case k = 2 seems to be the most difficult one.

Remark 5. There exists a 2-illuminable spiky ball SpB3 [x1, . . . , x10] in E3 with I(SpB3 [x1, . . . , x10]) = 5. Furthermore, there 
exists d0 such that for any d ≥ d0 one possesses a 2-illuminable spiky ball SpBd [x1, . . . , xn] in Ed with I(SpBd [x1, . . . , xn]) >
1.0645d−1.

Before we state our main result let us recall the following very interesting theorem of Naszódi [21]: Let 1 < D < 1.116. 
Then for any sufficiently large dimension d there exists a centrally symmetric cap body K such that I(K) ≥ 0.05Dd and 
1
D Bd ⊂ K ⊂ Bd . This raises the natural question whether Conjecture 1 holds for centrally symmetric cap bodies in sufficiently 
large dimensions. We give a positive answer this question as follows.

Theorem 6. Let SpBd [±x1, . . . , ±xn] be an o-symmetric cap body with vertices ±x1, . . . , ±xn in Ed, d ≥ 3. Then

I(SpBd [±x1, . . . ,±xn]) ≤ 2 + NSd−2

(π

4

)
.

Corollary 7. Any 3-dimensional centrally symmetric cap body can be illuminated by 6 (< 23) directions in E3 . (This is not a new result. 
It was proved via a dual method in [17].) On the other hand, any 4-dimensional centrally symmetric cap body can be illuminated by 
12 (< 24) directions in E4. Moreover, if SpBd [±x1, . . . , ±xn] is an o-symmetric cap body with vertices ±x1, . . . , ±xn in Ed, d ≥ 5, 
then

I(SpBd [±x1, . . . ,±xn]) ≤ 2 + 2
d−2

2
√

2π(d − 1)

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2) ln(d − 2),

where 2 + 2
d−2

2
√

2π(d − 1)
(

1
2 + 3 ln ln(d−2)

ln(d−2)
+ 3

ln(d−2)

)
(d − 2) ln(d − 2) < 2d holds for all d ≥ 19.

Remark 8. Clearly, Corollary 7 proves the Illumination Conjecture for centrally symmetric cap bodies of dimension d for 
d = 3, 4 and d ≥ 19. We note that based on Theorem 6, in order to prove the Illumination Conjecture for centrally symmetric 
cap bodies of dimension d for 5 ≤ d ≤ 18, it is sufficient to show that NSd−2

(
π
4

) ≤ 2d − 2 holds for all 5 ≤ d ≤ 18. It seems 
that the method of the recent paper [8] has the potential to achieve this goal. Indeed, this goal has already been achieved 
for d = 9 in [8] by showing that NS7

(
π
4

) ≤ 240 < 29 − 2 = 510.

Definition 3. The cap body K ⊂Ed is called 1-unconditionally symmetric if it symmetric about each coordinate hyperplane 
of Ed .

We close this section with a strengthening of Corollary 7 for 1-unconditionally symmetric cap bodies. Recall that accord-
ing to [17] if K is a 1-unconditionally symmetric cap body in E4, then I(K) ≤ 8.
3
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Theorem 9. Let K be a 1-unconditionally symmetric cap body in Ed, d ≥ 5. Then I(K) ≤ 4d.

While this proves Conjecture 1 for 1-unconditionally symmetric cap bodies in dimensions d ≥ 5, the 4d estimate does 
not seem to be sharp, and, in fact, we propose

Conjecture 10. Every 1-unconditionally symmetric cap body of Ed can be illuminated by 2d directions for all d ≥ 5.

In the rest of the paper we prove Theorems 2, 6, and 9, Corollaries 3 and 7, and Remark 5.

2. Proof of Theorem 2

We start with

Definition 4. If SpBd [x1, . . . , xn] is a spiky ball with vertices x1, . . . , xn in Ed , then let yi and 0 < αi < π
2 be defined for 

1 ≤ i ≤ n by CSd−1(yi, αi) = int
(
conv(Bd ∪ {xi})

) ∩ Sd−1, where int(·) refers to the interior of the corresponding set in Ed . 
We are going to refer to CSd−1(yi, αi) as the open spherical cap assigned to the vertex xi of SpBd [x1, . . . , xn].

It is easy to see that the direction v ∈ Sd−1 illuminates the vertex xi of the spiky ball SpBd [x1, . . . , xn] if and only if 
v ∈ CSd−1(−yi, π2 − αi). Thus, by observing that the set {vk : 1 ≤ k ≤ m} ⊂ Sd−1 of directions whose positive hull pos({vk :
1 ≤ k ≤ m}) := {∑m

k=1 λkvk | λk > 0 for all 1 ≤ k ≤ m} is Ed , illuminates the spiky ball SpBd [x1, . . . , xn] if and only if it 
illuminates the vertices x1, . . . , xn of SpBd [x1, . . . , xn], the following statement is immediate.

Lemma 11. Let SpBd [x1, . . . , xn] be a spiky (unit) ball with vertices x1, . . . , xn in Ed. Then

(a) SpBd [x1, . . . , xn] is 2-illuminable if and only if CSd−1(−yi, π2 − αi) ∩ CSd−1(−y j, π2 − α j) �= ∅ holds for all 1 ≤ i < j ≤ n
moreover,

(b) {vk : 1 ≤ k ≤ m} ⊂Sd−1 with pos({vk : 1 ≤ k ≤ m}) =Ed illuminates SpBd [x1, . . . , xn] if and only if CSd−1(−yi, π2 − αi) ∩ {vk :
1 ≤ k ≤ m} �= ∅ holds for all 1 ≤ i ≤ n.

Now, we are set to prove Theorem 2.
Part (i): Let SpB2 [x1, . . . , xn] be a 2-illuminable spiky (unit) disk with vertices x1, . . . , xn in E2. Let C := {CS1 (−yi, π2 −
αi) | 1 ≤ i ≤ n} be the family of open circular arcs (of length < π ) assigned to the vertices of SpB2 [x1, . . . , xn]. Without loss 
of generality we may assume that CS1 (−y1, π2 − α1) contains no other open circular arc of C . As by Part (a) of Lemma 11
CS1 (−yi, π2 −αi) ∩CS1 (−y j, π2 −α j) �= ∅ holds for all 1 ≤ i < j ≤ n therefore, there exist v1, v2 ∈ CS1 (−y1, π2 −α1) with each 
of them lying sufficiently close to one of the two endpoints of CS1 (−y1, π2 − α1) such that CS1 (−yi, π2 − αi) ∩ {v1, v2} �= ∅
holds for all 1 ≤ i ≤ n. Clearly, v1 �= −v2 and so, one can choose v3 ∈ S1 such that pos({vk : 1 ≤ k ≤ 3}) = E2. Hence, by 
Part (b) of Lemma 11 {vk : 1 ≤ k ≤ 3} ⊂ S1 illuminates SpB2 [x1, . . . , xn], implying I(SpB2 [x1, . . . , xn]) = 3 in a straightforward 
way.
Part (ii): Let SpB3 [x1, . . . , xn] be a 2-illuminable spiky (unit) ball with vertices x1, . . . , xn in E3. Let C := {CS2 (−yi, π2 −
αi) | 1 ≤ i ≤ n} be the family of open spherical caps assigned to the vertices of SpB3 [x1, . . . , xn]. By Part (a) of Lemma 11
any two members of C intersect. Next, recall the following theorem of Danzer [10]: If F is a family of finitely many closed 
spherical caps on S2 such that every two members of F intersect, then there exist 4 points on S2 such that each member 
of F contains at least one of them (i.e., 4 needles are always sufficient to pierce all members of F ). Now, applying Danzer’s 
theorem to C (or rather to the corresponding family of closed spherical caps with each closed spherical cap being somewhat 
smaller and concentric to an open spherical cap of C) one obtains the existence of v1, v2, v3, v4 ∈ S2 with the property that 
v1, v2, v3 are linearly independent and CS2 (−yi, π2 − αi) ∩ {v1, v2, v3, v4} �= ∅ holds for all 1 ≤ i ≤ n. Finally, let us choose 
v5 ∈ S2 such that pos({vk : 1 ≤ k ≤ 5}) =E3. (See Fig. 2.) Thus, Part (b) of Lemma 11 implies in a straightforward way that 
{vk : 1 ≤ k ≤ 5} ⊂ S2 illuminates SpB3 [x1, . . . , xn] and therefore I(SpB3 [x1, . . . , xn]) ≤ 5.
Part (iii): Let SpBd [x1, . . . , xn] be a 2-illuminable spiky (unit) ball with vertices x1, . . . , xn in Ed , d ≥ 4. Let C :=
{CSd−1(−yi, π2 −αi) | 1 ≤ i ≤ n} be the family of open spherical caps assigned to the vertices of SpBd [x1, . . . , xn]. By Part (a) 
of Lemma 11 any two members of C intersect. We need

Definition 5. Let G(2, Bd) denote the smallest positive integer k such that any finite family of pairwise intersecting d-
dimensional closed balls in Ed is k-pierceable (i.e., the finite family of balls can be partitioned into k subfamilies each 
having a non-empty intersection).

Now, recall Danzer’s estimate (see page 361 in [13]) according to which G(2, Bd) ≤ 1 + NSd−1(
π
6 ). Let s ∈ Sd−1 be a point 

which is not a boundary point of any member of C . If C′ (resp., C′′) consists of those members of C that contain s as an 
interior (resp., exterior) point, then clearly C = C′ ∪ C′′ . Let H be the hyperplane tangent to Sd−1 at −s in Ed . If we take 
4
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Fig. 2. Constructing v5 ∈S2 in the proof of Part (ii) of Theorem 2.

Fig. 3. The graph of f (x) showing that f (x) < 1 holds for all x ≥ 5.

the stereographic projection with center s that maps Sd−1 \ s onto H , then applying Danzer’s estimate to the images of 
C′′ in H we get that there are 1 + NSd−2(

π
6 ) points of Sd−1 piercing the members of C′′ in Sd−1. Hence, C is pierceable 

by 2 + NSd−2(
π
6 ) points (including s) in Sd−1. As members of C are open spherical caps of Sd−1 therefore there are 

3 + NSd−2(
π
6 ) points in Sd−1 whose positive hull is Ed such that they pierce the members of C . Thus, by Part (b) of 

Lemma 11 we get that I(SpBd [x1, . . . , xn]) ≤ 3 + NSd−2(
π
6 ). This completes the proof of Theorem 2.

3. Proof of Corollary 3

First, we recall that according to [29] there exists a covering of S2 using 20 (closed) spherical caps of angular radius 
π
6 . Thus, by Part (iii) of Theorem 2 if SpB4 [x1, . . . , xn] is a 2-illuminable spiky ball with vertices x1, . . . , xn in E4, then 
I(SpB4 [x1, . . . , xn]) ≤ 23.

Second, recall that Theorem 1 of [12] implies in a straightforward way that

3 + NSd−2

(π

6

)
≤ 3 + 1

�d−2(
π
6 )

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2) ln(d − 2), (1)

where �d−2(
π
6 ) is the fraction of the surface of Sd−2 covered by a closed spherical cap of angular radius π

6 . Next, the 
estimate �d−2(

π
6 ) > 1

2d−2
√

2π(d−1)
(see for example, Lemma 2.1 in [21]) combined with (1) yields that

3 + NSd−2

(π

6

)
≤ 3 + 2d−2

√
2π(d − 1)

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2) ln(d − 2) < 2d+1d

3
2 ln d (2)

holds for all d ≥ 5. Indeed, see Fig. 3 for the graph of the function

f (x) :=
3 + 2x−2√2π(x − 1)

(
1
2 + 3 ln ln(x−2)

ln(x−2)
+ 3

ln(x−2)

)
(x − 2) ln(x − 2)

x+1 3 , x > 3

2 x 2 ln x

5
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which clearly implies the last inequality of (2). For more details on this see the Appendix. Finally, if SpBd [x1, . . . , xn] is a 
2-illuminable spiky (unit) ball with vertices x1, . . . , xn in Ed , d ≥ 5, then (2) combined with Part (iii) of Theorem 2 finishes 
the proof of Corollary 3.

4. Proof of Remark 5

Recall the following construction of Danzer [10]: there exist 10 closed circular disks in E2 such that any two of them 
intersect and it is impossible to pierce them by 3 needles. It follows in a straightforward way that there exists a family 
C of 10 open circular disks in E2 (each being somewhat larger and concentric to a closed circular disk of the previous 
family) such that any two of them intersect and it is impossible to pierce them by 3 needles. Now, Let H be the plane 
tangent to S2 at the point say, −s with C lying in H . If we take the stereographic projection with center s that maps H
onto S2 \ s and label the image of the family C by C′ , then C′ is a family of 10 open spherical caps in S2 such that any two 
of them intersect and it is impossible to pierce them by 3 needles. By choosing C within a small neighborhood B H (−s) of 
−s in H , we get that each member of C′ is an open spherical cap of angular radius < π

2 . Next, let us take the spiky unit 
ball SpB3 [x1, . . . , x10] with {CS2 (−yi, π2 − αi) | 1 ≤ i ≤ 10} = C′ . Clearly, due to Part (a) of Lemma 11, SpB3 [x1, . . . , x10] is 
2-illuminable. Finally, if we choose B H (−s) sufficiently small, such that the spherical caps of C′ all lie in a hemisphere, then 
Part (b) of Lemma 11 and Part (ii) of Theorem 2 yield that I(SpB3 [x1, . . . , x10]) = 5.

Next, we recall the following construction of Bourgain and Lindenstrauss [9]: there exists d∗ such that for any d ≥ d∗ one 
possesses a finite point set P of diameter 1 in Ed whose any covering by unit diameter closed balls requires at least 1.0645d

balls. Hence, if we take the unit diameter closed balls centered at the points of P in Ed , then any two balls intersect and it 
is impossible to pierce them by fewer than �1.0645d� needles. It follows in a straightforward way that for any d ≥ d∗ there 
exists a family Cd of open balls centered at the points of P in Ed (each being somewhat larger and concentric to a unit 
diameter closed ball of the previous family) such that any two of them intersect and it is impossible to pierce them by fewer 
than �1.0645d� needles. Now, Let H be the hyperplane tangent to Sd−1 at the point say, −s with Cd−1 lying in H . If we 
take the stereographic projection with center s that maps H onto Sd−1 \ s and label the image of the family Cd−1 by C′

d−1, 
then C′

d−1 is a family of open spherical caps in Sd−1 such that any two of them intersect and it is impossible to pierce them 
by fewer than �1.0645d−1� needles. By choosing Cd−1 within a small neighborhood B H (−s) of −s in H , we get that each 
member of C′

d−1 is an open spherical cap of angular radius < π
2 . Next, let us take the spiky unit ball SpBd [x1, . . . , xn] with 

{CSd−1(−yi, π2 − αi) | 1 ≤ i ≤ n} = C′
d−1. Clearly, due to Part (a) of Lemma 11, SpBd [x1, . . . , xn] is 2-illuminable. Finally, if we 

choose B H (−s) sufficiently small, such that the spherical caps of C′
d−1 all lie in a hemisphere, then Part (b) of Lemma 11

yields that I(SpBd [x1, . . . , xn]) ≥ 1 + �1.0645d−1�, where d ≥ d∗ + 1.

5. Proof of Theorem 6

First, using Definition 4 we prove

Lemma 12. Let SpBd [±x1, . . . , ±xn] be an o-symmetric cap body with vertices ±x1, . . . , ±xn in Ed, d ≥ 3. Then

(a) CSd−1 [±yi, π2 − αi] ∩ CSd−1 [±y j, π2 − α j] �= ∅ holds for all 1 ≤ i < j ≤ n moreover,

(b) {vk : 1 ≤ k ≤ m} ⊂ Sd−1 with pos({vk : 1 ≤ k ≤ m}) =Ed illuminates SpBd [±x1, . . . , ±xn] if and only if CSd−1(±yi, π2 − αi) ∩
{vk : 1 ≤ k ≤ m} �= ∅ holds for all 1 ≤ i ≤ n.

Proof. Due to convexity and symmetry of SpBd [±x1, . . . , ±xn], the underlying spherical caps CSd−1 [±yi, αi], 1 ≤ i ≤ n form 
a packing in Sd−1 (see the Fig. 4 for the examples of the spiky ball cap configurations). Now, let 1 ≤ i < j ≤ n. For Part (a) 
it is sufficient to show that

CSd−1

[
−yi,

π

2
− αi

]
∩ CSd−1

[
y j,

π

2
− α j

]
�= ∅. (3)

(Namely, the same argument and symmetry will imply that CSd−1 [±yi, π2 − αi] ∩ CSd−1 [±y j, π2 − α j] �= ∅.) Let Hij be a 
hyperplane passing through o and separating CSd−1 [yi, αi] and CSd−1 [y j, α j]. Furthermore, let ni j ∈ Sd−1 (resp., −ni j ∈
Sd−1) be on the same side of Hij as CSd−1 [yi, αi] (resp., CSd−1 [y j, α j]) such that 〈±ni j, z〉 = 0 for all z ∈ Hij . Clearly −ni j ∈
CSd−1

[−yi,
π
2 − αi

]
moreover, ni j ∈ CSd−1

[−y j,
π
2 − α j

]
implying −ni j ∈ CSd−1

[
y j,

π
2 − α j

]
. Thus, (3) follows, finishing the 

proof of Part (a). Finally, Part (b) follows from Part (b) of Lemma 11 in a straightforward way. �
Second, based on Lemma 12, in order to prove Theorem 6 it is sufficient to show

Theorem 13. Let {CSd−1 [±zi, βi] | 1 ≤ i ≤ n} ⊂Sd−1 be an o-symmetric family of 2n closed spherical caps with d ≥ 3 and 0 < βi <
π , 1 ≤ i ≤ n such that
2

6
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Fig. 4. Underlying caps corresponding to the spiky balls in Fig. 1.

CSd−1 [±zi, βi] ∩ CSd−1 [±z j, β j] �= ∅ (4)

holds for all 1 ≤ i < j ≤ n. Then there exist u1, . . . , uN ∈ Sd−1 with N = 2 + NSd−2

(
π
4

)
and pos({uk : 1 ≤ k ≤ N}) = Ed such that 

CSd−1(±zi, βi) ∩ {uk : 1 ≤ k ≤ N} �= ∅ holds for all 1 ≤ i ≤ n.

Proof. Without loss of generality we may assume that the points {±zi | 1 ≤ i ≤ n} are pairwise distinct and

0 < β1 ≤ β2 ≤ · · · ≤ βn <
π

2
. (5)

Let H be the hyperplane of Ed with normal vectors ±z1 passing through o, and let Sd−2 := H ∩Sd−1.

Sublemma 1. Sd−2 ∩ CSd−1 [±zi, βi] is a (d − 2)-dimensional closed spherical cap of angular radius at least π4 for all 2 ≤ i ≤ n.

Proof. Let H+ be the closed halfspace of Ed bounded by H that contains z1. Let i be fixed with 2 ≤ i ≤ n. Without loss of 
generality we may assume that zi ∈ H+ and our goal is to show that Sd−2 ∩ CSd−1 [zi, βi] is a (d − 2)-dimensional closed 
spherical cap of angular radius at least π

4 . Let β be the smallest positive real such that

β1 ≤ β ≤ βi and CSd−1 [zi, β] ∩ CSd−1 [−z1, β1] �= ∅ (and therefore also CSd−1 [zi, β] ∩ CSd−1 [z1, β1] �= ∅). (6)

Thus, either CSd−1 [zi, β] is tangent to CSd−1 [−z1, β1] at some point of ̂zi(−z1) (Case 1) or β1 = β (Case 2).

Case 1: Let bi := ̂zi(−z1)∩Sd−2 and ai ∈ bd
(
CSd−1 [zi, β])∩Sd−2, where bd(·) denotes the boundary of the corresponding set 

in Sd−1. If zi ∈ H , then zi = bi and β = l(âibi) and therefore, (6) yields π
4 = 2β1+2β

4 ≤ β , finishing the proof of Sublemma 1. 
So, we are left with the case when ai, bi , and zi are pairwise distinct points on Sd−1 and the spherical triangle with 
vertices ai, bi , and zi has a right angle at bi . Clearly, l(âizi) = β and l(b̂izi) = β1 + β − π

2 . Let γ := l(âibi). According to 
Napier’s trigonometric rule for the side lengths of a spherical right triangle we have cos β = cos

(
β1 + β − π

2

)
cosγ . As 

π
2 < β1 + β < π and β1 ≤ β < π

2 , it follows that

cosγ = cosβ

sin(β1 + β)
≤ cosβ

sin(2β)
= 1

2 sinβ
<

1

2 sin π
4

= 1√
2
. (7)

Thus, γ > π
4 , implying that the angular radius of Sd−2 ∩ CSd−1 [zi, βi] is > π

4 . This completes the proof of Sublemma 1 in 
Case 1.

Case 2: Move CSd−1 [zi, β] without changing its radius such that zi moves along ẑiz1 and arrives at z∗
i ∈ ẑiz1 with the 

property that CSd−1 [z∗
i , β] is tangent to CSd−1 [−z1, β1] at some point of ̂z∗

i (−z1). Clearly,

Sd−2 ∩ CSd−1 [z∗
i , β] ⊂ Sd−2 ∩ CSd−1 [zi, β].

Thus, the proof of Case 1 applied to CSd−1 [z∗, β] finishes the proof of Sublemma 1. �
i

7
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Fig. 5. The graph of g(x)
h(x) showing that g(x)

h(x) < 1 holds for all x ≥ 19.

Now, let u1, . . . , uNSd−2
(

π
4

) ∈ Sd−2 such that the (d − 2)-dimensional closed spherical caps CSd−2 [u j, π4 ], 1 ≤ j ≤
NSd−2

(
π
4

)
cover Sd−2. It follows via Sublemma 1 that {u1, . . . , uNSd−2

(
π
4

)} ∩ (
Sd−2 ∩ CSd−1 [±zi, βi]

) �= ∅ holds for all 
2 ≤ i ≤ n. If necessary one can reposition the points u1, . . . , uNSd−2

(
π
4

) by a properly chosen isometry in Sd−2 such that 
the stronger condition {u1, . . . , uNSd−2

(
π
4

)} ∩ (
Sd−2 ∩ CSd−1(±zi, βi)

) �= ∅ holds as well for all 2 ≤ i ≤ n. Finally, adding the 
points ±z1 to {u1, . . . , uNSd−2

(
π
4

)} completes the proof of Theorem 13. �
6. Proof of Corollary 7

Using NS1
(
π
4

) = 4 and Theorem 6 one obtains in a straightforward way that any 3-dimensional centrally symmetric cap 
body can be illuminated by 6 directions in E3. Next, recall that 9 ≤ NS2

(
π
4

) ≤ 10 ([29]). This statement combined with 
Theorem 6 yields that any 4-dimensional centrally symmetric cap body can be illuminated by 12 directions in E4.

Remark 14. We note that the proof of Theorem 6 combined with the observation that S1 can be covered by 4 closed circular 
arcs of length π

2 forming an o-symmetric family implies that any 3-dimensional o-symmetric cap body can be illuminated 
by 6 o-symmetric directions in E3. However, a similar argument is not likely to work for the 4-dimensional setting because 
on the one hand, 9 ≤ NS2

(
π
4

) ≤ 10 ([29]) on the other hand, it does not seem to be possible to cover S2 neither with 9
nor with 10 closed spherical caps of angular radius π

4 forming an o-symmetric family.

Finally, recall that Theorem 1 of [12] implies in a straightforward way that

2 + NSd−2

(π

4

)
≤ 2 + 1

�d−2(
π
4 )

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2) ln(d − 2), (8)

where �d−2(
π
4 ) is the fraction of the surface of Sd−2 covered by a closed spherical cap of angular radius π

4 . Hence, the 
estimate �d−2(

π
4 ) > 1

2
d−2

2
√

2π(d−1)

(see for example, Lemma 2.1 in [21]) combined with (8) yields that

2 + NSd−2

(π

4

)
≤ 2 + 2

d−2
2

√
2π(d − 1)

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2) ln(d − 2) (9)

holds for all d ≥ 5. Furthermore,

2 + 2
d−2

2
√

2π(d − 1)

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2) ln(d − 2) < 2d (10)

holds for all d ≥ 19. Indeed, Fig. 5 shows that g(x)
h(x) < 1 holds for all x ≥ 19, where

g(x) := 2 + 2
x−2

2
√

2π(x − 1)

(
1

2
+ 3 ln ln(x − 2)

ln(x − 2)
+ 3

ln(x − 2)

)
(x − 2) ln(x − 2)

and h(x) := 2x . For more details on this see the Appendix. Thus, (9) (resp., (10)) combined with Theorem 6 finishes the 
proof of Corollary 7.

7. Proof of Theorem 9

Theorem 9 concerns illuminating the cap bodies SpBd [±x1, . . . , ±xn] that are symmetric about every coordinate hyper-
plane H j = {x ∈ Ed|〈x, e j〉 = 0}, 1 ≤ j ≤ d in Ed . According to Lemma 12, we only need to show that the open spherical 
caps CSd−1 (yi,π/2 − αi) , 1 ≤ i ≤ n can be pierced by 4d points in Sd−1 such that the positive hull of these 4d unit vectors 
is Ed .

We start by trying to use the 2d points {±e j | 1 ≤ j ≤ d}. If all the above mentioned open spherical caps are pierced by 
these 2d points, then the cap body in question can be illuminated by 2d directions and we are done. So, suppose there is 
8



K. Bezdek, I. Ivanov and C. Strachan Discrete Mathematics 346 (2023) 113135
a vertex xi such that the cap CSd−1 (yi,π/2 − αi) isn’t pierced by any of the 2d points {±e j | 1 ≤ j ≤ d}. Suppose then that 
k ≥ 0 of the points ±e j, 1 ≤ j ≤ d lie on the boundary of this cap, and the rest of these points are not in the cap’s closure 
CSd−1 [yi,π/2 − αi]. This leads us to

Definition 6. An open spherical cap CSd−1 (yi,π/2 − αi) is a k-spanning cap if exactly k ≥ 0 points of the set 
{±e j | 1 ≤ j ≤ d

}
lie on the boundary of CSd−1 (yi,π/2 − αi), and the other 2d − k points from the set 

{±e j | 1 ≤ j ≤ d
}

do not belong to 
CSd−1 [yi,π/2 − αi]. The images of a k-spanning cap under arbitrary composition of finitely many reflections about the 
coordinate hyperplanes of Ed are called a k-spanning family of caps.

To properly study these k-spanning families, we need the following fact: the underlying spherical caps CSd−1 [±yi, αi], 
1 ≤ i ≤ n of SpBd [±x1, . . . , ±xn] form a packing in Sd−1. This means αi + α j ≤ l(ŷi,y j) for any i �= j ∈ {1, . . . , n}. For the 
piercing caps CSd−1 (yi,π/2 − αi) and CSd−1

(
y j,π/2 − α j

)
we can rewrite this condition as

(π/2 − αi) + (
π/2 − α j

) ≥ π − l(ŷi,y j). (11)

Lemma 15. The open spherical cap CSd−1 (y,ϕ) with 0 < ϕ < π
2 belongs to some k-spanning family if and only if the coordinates of 

y form a permutation of the sequence ±1/
√

k, . . . ,±1/
√

k︸ ︷︷ ︸
k

, 0, . . . ,0︸ ︷︷ ︸
d−k

and ϕ is equal to arccos(1/k), where 2 ≤ k ≤ d.

Proof. The statement is trivial in one direction. Namely, it is clear that the open spherical cap with the center and radius 
as described is not pierced by any vectors from {±e j |1 ≤ j ≤ d}. In particular, it is a k-spanning cap for 2 ≤ k ≤ d. It is also 
clear, that its images under arbitrary composition of finitely many reflections about the coordinate hyperplanes of Ed are 
k-spanning caps as well, forming a k-spanning family.

So, we are left to prove the non-trivial direction. Since any k-spanning family is unconditionally symmetric, we may 
assume that the cap CSd−1 (y,ϕ) with center y = (x1, . . . , xd) is such that the x j ’s are non-negative. Without loss of gener-
ality, suppose e1, . . . , ek ∈ bd CSd−1 [y,ϕ] and ek+1, . . . , ed are not in CSd−1 [y,ϕ], where 0 < ϕ < π/2. We can rewrite this 
condition as follows:{

x j = cosϕ, if j ≤ k

x j < cosϕ, if j > k
(12)

To finish the proof we only need to show that xk+1 = xk+2 = · · · = xd = 0. Suppose xk+1 > 0. Then let the cap CSd−1

(
y′,ϕ

)
be a reflection of CSd−1 (y,ϕ) about the coordinate hyperplane Hk+1, hence y′ = (x1, . . . , xk, −xk+1, xk+2, . . . , xd). Using the 
inequality (11) for the caps CSd−1

(
y′,ϕ

)
and the CSd−1 (y,ϕ), we get the following:

ϕ + ϕ ≥ π − l(ŷ,y′),

cos 2ϕ ≤ − cos(l(ŷ,y′)),

cos 2ϕ ≤ −(x2
1 + · · · + x2

k − x2
k+1 + x2

k+2 + · · · + x2
d),

2 cos2 ϕ − 1 ≤ −1 + 2x2
k+1,

cosϕ ≤ xk+1.

That clearly contradicts the second part of (12) and so, xk+1 = 0, and the same goes for xk+2, . . . , xd . Finally, by the 
first part of (12) one obtains that ϕ = arccos(1/

√
k). It follows via 0 < ϕ < π/2 that 2 ≤ k ≤ d, finishing the proof of 

Lemma 15. �
Claim 16. The open spherical cap CSd−1 (x, α) is pierced by u ∈Sd−1 or −u ∈Sd−1 if and only if 

∣∣∣ 〈x,u〉
cosα

∣∣∣ > 1.

Proof. Clearly, u pierces CSd−1(x, α) if and only if l(û,x) < α, i.e., cos (l(û,x)) > cosα. As α ranges from 0 to π
2 it is 

equivalent to 〈u,x〉
cosα > 1. Similarly, −u piercing CSd−1(x, α) is equivalent to 〈u,x〉

cosα < −1. Bringing these statements together 
gives us the claim. �

Each non-k-spanning cap is pierced by some point from {±e j | 1 ≤ j ≤ d}. If we take our new piercing points close 
enough to {±e j | 1 ≤ j ≤ d}, we still pierce all the non-k-spanning caps. Thus, we only need to construct a set of 4d points 
on Sd−1 such that there is a point in a sufficiently small neighborhood of every point from {±e j | 1 ≤ j ≤ d} moreover, 
every k-spanning cap is pierced.
9
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Fig. 6. Example of the points u j ,v j on S2.

Lemma 17. Let ϕ be an angle in (0, π/2), and let the points u j, v j ∈Sd−1, 1 ≤ j ≤ d be defined in the following way:

u j =

⎛⎜⎜⎜⎝ sinϕ√
d − 1

,
sinϕ√
d − 1

, . . . ,
sinϕ√
d − 1

, cosϕ︸ ︷︷ ︸
j

,
sinϕ√
d − 1

, . . . ,
sinϕ√
d − 1

⎞⎟⎟⎟⎠ ,

v j =

⎛⎜⎜⎜⎝− sinϕ√
d − 1

,− sinϕ√
d − 1

, . . . ,− sinϕ√
d − 1

, cosϕ︸ ︷︷ ︸
j

,− sinϕ√
d − 1

, . . . ,− sinϕ√
d − 1

⎞⎟⎟⎟⎠ .

If ϕ is sufficiently small, then the 4d vectors 
{±u j,±v j | 1 ≤ j ≤ d

}
pierce any k-spanning cap.

Proof. Essentially, as seen in the Fig. 6, we obtain u j by rotating e j with an angle ϕ towards the point 
(

1/
√

k, . . . ,1/
√

k
)

, 
and v j we get by rotating e j away from the same point.

Let CSd−1(y, α) be an open spherical cap of a k-spanning family. Lemma 15 implies that α = arccos(1/
√

k) and y =
1√
k
(s1, . . . , sd) such that s j ∈ {0, ±1} and 

∑d
j=1 s2

j = k, where 2 ≤ k ≤ d. We will need the parameter s = ∑d
j=1 s j as well. 

Next, we pick some 1 ≤ j ≤ d such that s j �= 0. According to Claim 16, CSd−1(y, α) is pierced by u j or −u j (resp., v j or −v j ) 
if and only if 

∣∣∣〈u j,
√

ky〉
∣∣∣ > 1 (resp., 

∣∣∣〈v j,
√

ky〉
∣∣∣ > 1). Now, observe that

〈u j,
√

ky〉 = s j cosϕ + (s − s j)
sinϕ√
d − 1

and 〈v j,
√

ky〉 = s j cosϕ − (s − s j)
sinϕ√
d − 1

. (13)

If s j(s − s j) > 0, then (13) implies that for any sufficiently small ϕ one has 
∣∣∣〈u j,

√
ky〉

∣∣∣ > 1. Similarly, if s j(s − s j) < 0, 

then by (13)
∣∣∣〈v j,

√
ky〉

∣∣∣ > 1 holds for any sufficiently small ϕ . So, we are left with the case when s j(s − s j) = 0. Since 
s j �= 0, that yields s j = s. Thus, s = ±1 and so, we just pick a different j so that s �= s j and repeat the above process. Indeed, 
we can do that since s = ±1, and that means we must have both 1’s and -1’s in the sequence s1, . . . , sd . Otherwise, the sign 
of all the non-zero s j ’s would be the same, and that would result in s = ±k, a contradiction because k ≥ 2. This completes 
the proof of Lemma 17. �

Clearly, the positive hull of the vectors 
{±u j,±v j | 1 ≤ j ≤ d

}
is Ed . Moreover, if ϕ is sufficiently small, then any 

cap CSd−1 (yi,π/2 − αi) that isn’t a k-spanning cap for some 1 ≤ i ≤ n and 2 ≤ k ≤ d, is pierced by a point from 
10



K. Bezdek, I. Ivanov and C. Strachan Discrete Mathematics 346 (2023) 113135
{±u j,±v j | 1 ≤ j ≤ d
}

. Finally, if CSd−1 (yi,π/2 − αi) is a k-spanning cap for some 1 ≤ i ≤ n and 2 ≤ k ≤ d, then Lemma 17
implies that it is pierced by the 4d vectors 

{±u j,±v j | 1 ≤ j ≤ d
}

. That concludes the proof of Theorem 9.
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Appendix A

A.1. More on the last inequality of (2)

We prove the following inequality in this section:

3 + 2d−2
√

2π(d − 1)

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2) ln(d − 2) < 2d+1d

3
2 ln d, (14)

where d ≥ 4. For the integer values 4 ≤ d ≤ 10 one can check the inequality numerically, i.e., one can show that

f (x) :=
3 + 2x−2√2π(x − 1)

(
1
2 + 3 ln ln(x−2)

ln(x−2)
+ 3

ln(x−2)

)
(x − 2) ln(x − 2)

2x+1x
3
2 ln x

is less than 1 for any integer x chosen from the interval 3 < x ≤ 10. Next, suppose that d > 10. Clearly, inequality (14) is 
equivalent to the following inequality:

3

2d+1d
3
2 ln d

+ 2−3

√
2π(d − 1)√

d

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2)

d

ln(d − 2)

ln d
< 1.

First, observe that

3

2d+1d3/2 ln d
+ 2−3

√
2π(d − 1)√

d

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2)

d

ln(d − 2)

ln d

<
3

2d
+

√
2π

8

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
.

Second, consider the function a(x) :=
(

1
2 + 3 ln ln(x−2)

ln(x−2)
+ 3

ln(x−2)

)
. Then a′(x) = − ln ln(x−2)

(x−2) ln4(x−2)
. From this it follows that a′(x) <

0 for x > e + 2, hence a(x) monotone decreasing over the interval x > 10. Finally, observe that 3
210 + a(10) < 1. As both a(x)

and 3
10x are monotone decreasing, (14) holds for all d > 10.

A.2. More on inequality (10)

Here we prove the inequality

2 + 2
d−2

2
√

2π(d − 1)

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2) ln(d − 2) < 2d

for d ≥ 19. First, one can check numerically that the above inequality holds for any integer 19 ≤ d ≤ 50. Second, suppose 
that d > 50. From the fact that the function a(x) =

(
1
2 + 3 ln ln(x−2)

ln(x−2)
+ 3

ln(x−2)

)
is monotone decreasing over the interval x > 5, 

it follows that a(d) < a(50) < 3 holds for any d > 50. Thus, it follows that
11
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2 + 2
d−2

2
√

2π(d − 1)

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2) ln(d − 2)

< 2
d
2
√

2π(d − 1)

(
1

2
+ 3 ln ln(d − 2)

ln(d − 2)
+ 3

ln(d − 2)

)
(d − 2) ln(d − 2)

< 2d/2(3
√

d)3d ln d

< 2d/2(9d2) < 2d

holds for any d > 50.
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