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Contact graphs of unit sphere packings
revisited

Károly Bezdek and Samuel Reid

Abstract. The contact graph of an arbitrary finite packing of unit balls
in Euclidean 3-space is the (simple) graph whose vertices correspond to
the packing elements and whose two vertices are connected by an edge
if the corresponding two packing elements touch each other. One of the
most basic questions on contact graphs is to find the maximum number
of edges that a contact graph of a packing of n unit balls can have. In this
paper, improving earlier estimates, we prove that the number of touching
pairs in an arbitrary packing of n unit balls in E

3 is always less than

6n− 0.926n
2
3 . Moreover, as a natural extension of the above problem, we

propose to study the maximum number of touching triplets (resp., qua-
druples) in an arbitrary packing of n unit balls in Euclidean 3-space. In
particular, we prove that the number of touching triplets (resp., quadru-
ples) in an arbitrary packing of n unit balls in E

3 is at most 25
3

n (resp.,
11
4

n).
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1. Introduction

Let E
d denote d-dimensional Euclidean space. Then the contact graph of an

arbitrary finite packing of unit balls (i.e., of an arbitrary finite family of non-
overlapping balls having unit radii) in E

d is the (simple) graph whose vertices
correspond to the packing elements and whose two vertices are connected by an
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edge if and only if the corresponding two packing elements touch each other.
One of the most basic questions on contact graphs is to find the maximum
number of edges that a contact graph of a packing of n unit balls can have in
E

d. In 1974 Harborth [9] proved the following optimal result in E
2: the maxi-

mum number of touching pairs in a packing of n congruent circular disks in E
2

is precisely �3n − √
12n − 3�. In dimensions three and higher only estimates

are known for the maximum number of touching pairs. In particular, just very
recently the first named author [2] proved that the number of touching pairs
in an arbitrary packing of n unit balls in E

3 is always less than 6n − 0.695n
2
3 .

Moreover, it is proved in [1] that for d ≥ 4 the number of touching pairs in an
arbitrary packing of n unit balls in E

d is less than

1
2
τd n − 1

2d
δ

− d−1
d

d n
d−1

d ,

where τd stands for the kissing number of a unit ball in E
d (i.e., it denotes the

maximum number of non-overlapping unit balls of E
d that can touch a given

unit ball in E
d) and δd denotes the largest possible density for (infinite) pac-

kings of unit balls in E
d. For a nice survey on recognition-complexity results

of ball contact graphs we refer the interested reader to [10].

In this paper, first we improve the above quoted upper bound of [2] as follows.

Theorem 1.1. (i) The number of touching pairs in an arbitrary packing of
n ≥ 2 unit balls in E

3 is always less than 6n − 0.926n
2
3 .

(ii) The number of touching pairs in an arbitrary lattice packing of n ≥ 2
unit balls in E

3 is always less than 6n − 3 3√18π
π n

2
3 = 6n − 3.665 . . . n

2
3 .

In connection with Theorem 1.1 we recall from [2] that for all n = 2k3+k
3 , k ≥ 2,

there are packings of n unit balls in E
3 such that the number of touching pairs

is greater than 6n − 3
√

486n
2
3 = 6n − 7.862 . . . n

2
3 .

Second, as a natural extension of the above discussed problem on the num-
ber of touching pairs, we propose to study the maximum number of touching
triplets, quadruples, etc. in an arbitrary packing of n unit balls in E

d. Harb-
orth’s proof [9] implies in a straightforward way that the maximum number of
touching triplets in a packing of n congruent circular disks in E

2 is precisely
�3n − √

12n − 3� − n + 1. In this paper we study the 3-dimensional case of the
problem at hand and prove the following estimates.

Theorem 1.2. (i) The number of touching triplets (resp., quadruples) in an
arbitrary packing of n ≥ 3 (resp., n ≥ 4) unit balls in E

3 is at most 25
3 n

(resp., 11
4 n).

(ii) The number of touching triplets (resp., quadruples) in an arbitrary lat-
tice packing of n ≥ 2 unit balls in E

3 is at most 8n (resp., 2n).

(iii) For all n = 2k3+k
3 , k ≥ 2, there are packings of n unit balls (with their

centers lying on a face-centered cubic lattice) in E
3 such that the number

of touching triplets (resp., quadruples) is
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4
3
(k − 1)k(4k − 5) > 8n − 12

(
3
2
n

)2/3

+ 4n1/3

(resp.,
4
3
(k − 2)(k − 1)k > 2n − 4

(
3
2
n

)2/3

+ 2n1/3).

Remark 1.3. Just very recently Hales [7] informed us about the following. In
Part (iii) of Theorem 1.2, the restriction given that n = 2k3+k

3 is not necessary.

In general, it is possible to write 2k3+k
3 < n = 2(k+1)3+(k+1)

3 −p for some k and
some p ≥ 0. Then p points can be removed from the large octahedron, which is
the underlying construction in Part (iii) of Theorem 1.2, in a systematic way
starting from a vertex and working systematically, layer by layer, and row by
row, until p points are removed. Furthermore, in the same way, the underlying
octahedral construction of Part (iii) of Theorem 1.2 can be improved further.
Instead of taking the basic shape to be an octahedron, we can use a truncated
octahedron, which is more efficient, again resolving an error term of p points
by working systematically layer by layer, and row by row. As the truncated
octahedron has two parameters, the edge length of the square, and the edge
length on the hexagonal face that does not lie on the square, one is led to
determine the optimal relation between these two parameters.

The proof of (i) in Theorem 1.2 is based on the following statement that might
be of independent interest in particular, because one can regard that statement
as a spherical analogue of Harborth’s theorem [9] for the angular radius π/6
(on the unit sphere S

2 centered at the origin in E
3).

Theorem 1.4. The number of touching pairs (resp., triplets) in an arbitrary
packing of spherical caps of angular radius π/6 on S

2 is at most 25 (resp., 11).

Theorem 1.4 raises the following question. Is the number of touching pairs
(resp., triplets) in an arbitrary packing of spherical caps of angular radius π/6
on S

2 always at most 24 (resp., 10)?

Remark 1.5. Just very recently Hales [7] has given a positive answer to the
above question. It was established by a computer search the details of which
can be found at [8]. This implies the following improvement on the estimates
in (i) of Theorem 1.2. The number of touching triplets (resp., quadruples) in
an arbitrary packing of n unit balls in E

3 is at most 8n (resp., 5
2n).

The rest of the paper is organized as follows. In Sect. 2 we prove (i) of Theo-
rem 1.1. Section 3 proves (ii) of Theorem 1.1 as well as (ii) of Theorem 1.2. In
Sect. 4 we give a short proof of (i) in Theorem 1.2 using Theorem 1.4. Sections
5 and 6 present our elementary proof of Theorem 1.4. Finally, Sect. 7 gives a
proof of (iii) in Theorem 1.2.

2. Proof of (i) in Theorem 1.1

The proof presented in this section follows the ideas of the proof of (i) of Theo-
rem 1.1 in [2] with some proper modifications based on the recent breakthrough
results of Hales [6]. The details are as follows.
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Let B denote the (closed) unit ball centered at the origin o of E
3 and let

P := {c1 + B, c2 + B, . . . , cn + B} denote the packing of n unit balls with
centers c1, c2, . . . , cn in E

3 having the largest number C(n) of touching pairs
among all packings of n unit balls in E

3. (P might not be uniquely determined
up to congruence in which case P stands for any of those extremal packings.)
Now, let r̂ := 1.58731. The following statement shows the main property of r̂
that is needed for our proof of Theorem 1.1.

Theorem 2.1. Let B1,B2, . . . ,B13 be 13 different members of a packing of unit
balls in E

3. Assume that each ball of the family B2,B3, . . . ,B13 touches B1.
Let B̂i be the closed ball concentric with Bi having radius r̂, 1 ≤ i ≤ 13. Then
the boundary bd(B̂1) of B̂1 is covered by the balls B̂2, B̂3, . . . , B̂13, that is,

bd(B̂1) ⊂ ∪13
j=2B̂j .

Proof. Let oi be the center of the unit ball Bi, 1 ≤ i ≤ 13 and assume that
B1 is tangent to the unit balls B2,B3, . . . ,B13 at the points tj ∈ bd(Bj) ∩
bd(B1), 2 ≤ j ≤ 13.

Let α denote the measure of the angles opposite to the equal sides of the
isosceles triangle �o1pq with dist(o1,p) = 2 and dist(p,q)=dist(o1,q) = r̂,
where dist(·, ·) denotes the Euclidean distance between the corresponding two
points. Clearly, cos α = 1

r̂ with α < π
3 (Fig. 1).

Lemma 2.2. Let T be the convex hull of the points t2, t3, . . . , t13. Then the
radius of the circumscribed circle of each face of the convex polyhedron T is
less than sin α.

Proof. Let F be an arbitrary face of T with vertices tj , j ∈ IF ⊂ {2, 3, . . . ,
13} and let cF denote the center of the circumscribed circle of F . Clearly, the
triangle �o1cF tj is a right triangle with a right angle at cF and with an acute
angle of measure βF at o1 for all j ∈ IF . We have to show that βF < α. We
prove this by contradiction. Namely, assume that α ≤ βF . Then either π

3 < βF

or α ≤ βF ≤ π
3 . First, let us take a closer look of the case π

3 < βF . Reflect the
point o1 about the plane of F and label the point obtained by o′

1 (Fig. 2).

Clearly, the triangle �o1o′
1oj is a right triangle with a right angle at o′

1 and
with an acute angle of measure βF at o1 for all j ∈ IF . Then reflect the point
o1 about o′

1 and label the point obtained by o′′
1 furthermore, let B′′

1 denote

Figure 1 The isosceles triangle �o1pq
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Figure 2 The plane reflections to obtain o′
1 and o′′

1

the unit ball centered at o′′
1 . As π

3 < βF therefore dist(o1,o′′
1) < 2 and so, one

can simply translate B′′
1 along the line o1o′′

1 away from o1 to a new position
say, B′′′

1 such that it is tangent to B1. However, this would mean that B1

is tangent to 13 non-overlapping unit balls namely, to B′′′
1 ,B2,B3, . . . ,B13,

clearly contradicting to the well-known fact ([16]) that this number cannot be
larger than 12. Thus, we are left with the case when α ≤ βF ≤ π

3 . By repeating
the definitions of o′

1, o′′
1 , and B′′

1 , the inequality βF ≤ π
3 implies in a straight-

forward way that the 14 unit balls B1,B′′
1 ,B2,B3, . . . ,B13 form a packing in

E
3. Moreover, the inequality α ≤ βF yields that dist(o1,o′′

1) ≤ 4 cos α = 4
r̂ =

2.51998... < 2.52. Finally, notice that the latter inequality contradicts to the
following recent result of Hales [6].

Theorem 2.3. Let B1,B2, . . . ,B14 be 14 different members of a packing of unit
balls in E

3. Assume that each ball of the family B2,B3, . . . ,B13 touches B1.
Then the distance between the centers of B1 and B14 is at least 2.52.

This completes the proof of Lemma 2.2. �
Now, we are ready to prove Theorem 2.1. First, we note that by projecting
the faces F of T from the center point o1 onto the sphere bd(B̂1) we get a
tiling of bd(B̂1) into spherically convex polygons F̂ . Thus, it is sufficient to
show that if F is an arbitrary face of T with vertices tj , j ∈ IF ⊂ {2, 3, . . . ,

13}, then its central projection F̂ ⊂ bd(B̂1) is covered by the closed balls
B̂j , j ∈ IF ⊂ {2, 3, . . . , 13}. Second, in order to achieve this it is sufficient to
prove that the projection ĉF of the center cF of the circumscribed circle of
F from the center point o1 onto the sphere bd(B̂1) is covered by each of the
closed balls B̂j , j ∈ IF ⊂ {2, 3, . . . , 13}. Indeed, if in the triangle �o1oj ĉF
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the measure of the angle at o1 is denoted by βF , then Lemma 2.2 implies
in a straighforward way that βF < α. Hence, based on dist(o1,oj) = 2 and
dist(o1, ĉF ) = r̂, a simple comparison of the triangle �o1oj ĉF with the trian-
gle �o1pq yields that dist(oj , ĉF ) < r̂ holds for all j ∈ IF ⊂ {2, 3, . . . , 13},
finishing the proof of Theorem 2.1. �
Next, let us take the union

⋃n
i=1 (ci + r̂B) of the closed balls c1 + r̂B, c2 +

r̂B, . . . , cn + r̂B of radii r̂ centered at the points c1, c2, . . . , cn in E
3.

Theorem 2.4.

nvol3(B)
vol3 (

⋃n
i=1 (ci + r̂B))

< 0.7547,

where vol3(·) refers to the 3-dimensional volume of the corresponding set.

Proof. First, partition
⋃n

i=1 (ci + r̂B) into truncated Voronoi cells as follows.
Let Pi denote the Voronoi cell of the packing P assigned to ci +B, 1 ≤ i ≤ n,
that is, let Pi stand for the set of points of E

3 that are not farther away from
ci than from any other cj with j �= i, 1 ≤ j ≤ n. Then, recall the well-known
fact (see for example, [5]) that the Voronoi cells Pi, 1 ≤ i ≤ n just intro-
duced form a tiling of E

3. Based on this it is easy to see that the truncated
Voronoi cells Pi ∩ (ci + r̂B), 1 ≤ i ≤ n generate a tiling of the non-con-
vex container

⋃n
i=1 (ci + r̂B) for the packing P. Second, as

√
2 < r̂ therefore

the following very recent result of Hales [6] applied to the truncated Voronoi
cells Pi ∩ (ci + r̂B), 1 ≤ i ≤ n implies the inequality of Theorem 2.4 in a
straightforward way (Fig. 3).

Theorem 2.5. Let F be an arbitrary (finite or infinite) family of non-over-
lapping unit balls in E

3 with the unit ball B centered at the origin o of E
3

belonging to F . Let P stand for the Voronoi cell of the packing F assigned to
B. Let Q denote a regular dodecahedron circumscribed B (having circumradius√

3 tan π
5 = 1.2584...). Finally, let r :=

√
2 = 1.4142... and let rB denote the

ball of radius r centered at the origin o of E
3. Then

Figure 3 Voronoi cells of a packing with yellow ci +B’s and
blue ci + r̂B’s
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vol3(B)
vol3(P)

≤ vol3(B)
vol3(P ∩ rB)

≤ vol3(B)
vol3(Q)

< 0.7547.

This finishes the proof of Theorem 2.4. �
The well-known isoperimetric inequality [13] applied to

⋃n
i=1 (ci + r̂B) yields

Lemma 2.6.

36πvol23

(
n⋃

i=1

(ci + r̂B)

)
≤ svol32

(
bd

(
n⋃

i=1

(ci + r̂B)

))
,

where svol2(·) refers to the 2-dimensional surface volume of the corresponding
set.

Thus, Theorem 2.4 and Lemma 2.6 generate the following inequality.

Corollary 2.7.

15.159805n
2
3 < 15.15980554...n

2
3 =

4π

(0.7547)
2
3
n

2
3

< svol2

(
bd

(
n⋃

i=1

(ci + r̂B)

))
.

Now, assume that ci + B ∈ P is tangent to cj + B ∈ P for all j ∈ Ti,
where Ti ⊂ {1, 2, . . . , n} stands for the family of indices 1 ≤ j ≤ n for which
dist(ci, cj) = 2. Then let Ŝi := bd(ci + r̂B) and let ĉij be the intersection of
the line segment cicj with Ŝi for all j ∈ Ti. Moreover, let CŜi

(ĉij ,
π
6 ) (resp.,

CŜi
(ĉij , α)) denote the open spherical cap of Ŝi centered at ĉij ∈ Ŝi having

angular radius π
6 (resp., α with 0 < α < π

2 and cos α = 1
r̂ ). Clearly, the family

{CŜi
(ĉij ,

π
6 ), j ∈ Ti} consists of pairwise disjoint open spherical caps of Ŝi;

moreover,
∑

j∈Ti
svol2

(
CŜi

(ĉij ,
π
6 )

)

svol2
(
∪j∈Ti

CŜi
(ĉij , α)

) =

∑
j∈Ti

Sarea
(
C(uij ,

π
6 )

)
Sarea (∪j∈Ti

C(uij , α))
, (2.1)

where uij := 1
2 (cj − ci) ∈ S

2 := bd(B) and C(uij ,
π
6 ) ⊂ S

2 (resp., C(uij , α) ⊂
S

2) denotes the open spherical cap of S
2 centered at uij having angular radius

π
6 (resp., α) and where Sarea(·) refers to the spherical area measure on S

2.
Now, Molnár’s density bound (Satz I in [12]) implies that∑

j∈Ti
Sarea

(
C(uij ,

π
6 )

)
Sarea (∪j∈Ti

C(uij , α))
< 0.89332. (2.2)

In order to estimate

svol2

(
bd

(
n⋃

i=1

(ci + r̂B)

))
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from above let us assume that m members of P have 12 touching neighbours
in P and k members of P have at most 9 touching neighbours in P. Thus,
n−m− k members of P have either 10 or 11 touching neighbours in P. (Here
we have used the well-known fact that τ3 = 12, that is, no member of P can
have more than 12 touching neighbours.) Without loss of generality we may
assume that 4 ≤ k ≤ n − m.

First, we note that Sarea
(
C(uij ,

π
6 )

)
= 2π(1 − cos π

6 ) = 2π(1 −
√

3
2 ) and

svol2
(
CŜi

(ĉij ,
π
6 )

)
= 2π(1 −

√
3

2 )r̂2. Second, recall Theorem 2.1 according to
which if a member of P say, ci + B has exactly 12 touching neighbours in P,
then Ŝi ⊂ ⋃

j∈Ti
(cj + r̂B). These facts together with (2.1) and (2.2) imply the

following estimate.

Corollary 2.8. svol2 (bd (
⋃n

i=1 (ci + r̂B))) < 24.53902
3 (n − m − k) + 24.53902k.

Proof.

svol2

(
bd

(
n⋃

i=1

(ci + r̂B)

))

<

(
4πr̂2− 10 · 2π(1−

√
3

2 )r̂2

0.89332

)
(n−m−k)+

(
4πr̂2 − 3 · 2π(1−

√
3

2 )r̂2

0.89332

)
k

< 7.91956(n−m−k)+24.53902k <
24.53902

3
(n−m−k) + 24.53902k.

�
Hence, Corollary 2.7 and Corollary 2.8 yield in a straightforward way that

1.85335n
2
3 − 3k < n − m − k. (2.3)

Finally, as the number C(n) of touching pairs in P is obviously at most

1
2

(12n − (n − m − k) − 3k) ,

therefore (2.3) implies that

C(n) ≤ 1
2

(12n − (n − m − k) − 3k) < 6n − 0.926675n
2
3 < 6n − 0.926n

2
3 ,

finishing the proof of (i) in Theorem 1.1.

3. Upper bounds for Lattice Packings

3.1. Proof of (ii) in Theorem 1.1

Let us imagine that we generate packings of n unit balls in E
3 in such a spe-

cial way that each and every center of the n unit balls chosen, is a lattice
point of some fixed lattice Λ (resp., of the face-centered cubic lattice Λfcc)
with shortest non-zero lattice vector of length 2. (Here, a lattice means a
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(discrete) set of points having position vectors that are integer linear com-
binations of three fixed linearly independent vectors of E

3.) Then let CΛ(n)
(resp., Cfcc(n)) denote the largest possible number of touching pairs for all
packings of n unit balls obtained in this way. In order to prove (ii) in Theo-
rem 1.1 it is sufficient to show that CΛ(n) ≤ Cfcc(n) and recall from [2] that
Cfcc(n) < 6n − 3 3√18π

π n
2
3 = 6n − 3.665 . . . n

2
3 . So, we are left to show that

CΛ(n) ≤ Cfcc(n). The details are as follows.

Recall Voronoi’s theorem (see [3]) according to which every 3-dimensional lat-
tice is of the first kind i.e., it has an obtuse superbase. Thus, for the lattice
Λ (resp., Λfcc) we have a set of vectors v0,v1,v2,v3 (resp., w0,w1,w2,w3 )
such that v1,v2,v3 (resp., w1,w2,w3) is an integral basis for Λ (resp., Λfcc)
and v0 + v1 + v2 + v3 = o (resp., w0 + w1 + w2 + w3 = o), and in addition
vi · vj ≤ 0 (resp., wi · wj ≤ 0) for all i, j = 0, 1, 2, 3, i �= j. Here · refers to
the standard inner product of E

3. Let P (resp., Q) denote the Voronoi cell for
the origin o ∈ Λ (resp., o ∈ Λfcc) consisting of points of E

3 that are at least
as close to o as to any other lattice point of Λ (resp., Λfcc). A vector v ∈ Λ
(resp., w ∈ Λfcc) is called a strict Voronoi vector of Λ (resp., Λfcc) if the plane
{x ∈ E

3 | x ·v = 1
2v ·v} (resp., {x ∈ E

3 | x ·w = 1
2w ·w} ) intersects P (resp.,

Q) in a face. We need the following claim proved in [3]. The list of 14 lattice
vectors of Λ (resp., Λfcc) consisting of

±v1,±(v0 + v1),±(v1 + v2),±(v1 + v3),
±(v0 + v1 + v2),±(v0 + v1 + v3),±(v1 + v2 + v3)
(resp., ± w1,±(w0 + w1),±(w1 + w2),±(w1 + w3),
±(w0 + w1 + w2),±(w0 + w1 + w3),±(w1 + w2 + w3))

includes all the strict Voronoi vectors of Λ (resp., Λfcc). As is well known
(and in fact, it is easy check) at most 12 (resp., exactly 12) of the above
14 vectors has length 2 and the others are of length strictly greater than 2.
Thus, it follows that without loss of generality we may assume that whenever
vi · vi = 4 holds we have wi · wi = 4 as well. This implies the exisctence of
a map f : Λ → Λfcc with the property that if dist(x,y) = 2 with x,y ∈ Λ,
then also dist(f(x), f(y)) = 2 holds. Indeed, f can be defined via f(αv1 +
βv2 + γv3) = αw1 + βw2 + γw3 with α, β, γ being arbitrary integers. As
a result we get the following: if P is a packing of n unit balls with centers
c1, c2, . . . , cn ∈ Λ, then the packing Pf of n unit balls centered at the points
f(c1), f(c2), . . . , f(cn) ∈ Λfcc possesses the property that C(P) ≤ C(Pf ),
where C(P) (resp., C(Pf )) stands for the number of touching pairs in P (resp.,
Pf ). Thus, indeed, CΛ(n) ≤ Cfcc(n) finishing the proof of (ii) in Theorem 1.1.

3.2. Proof of (ii) in Theorem 1.2

Based on the previous subsection, it is sufficient to prove the estimate in ques-
tion on the touching triplets (resp., quadruples) when the packing P of n unit
balls in E

3 is given in such a special way that each center is a lattice point
of the face-centered cubic lattice Λfcc with shortest non-zero lattice vector of
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length 2. Then we take the contact graph G(P) of P with vertices identical to
the center points of the unit balls in P and with edges between two vertices
if the corresponding two unit balls of P touch each other. Clearly, a touching
triplet (resp., quadruple) in P corresponds to a regular triangle (resp., regular
tetrahedron) of edge length 2 in G(P). Using the symmetries of Λfcc, it is
easy to check that at most 24 (resp., 8) regular triangles (resp., tetrahedra) of
edge length 2 can have a vertex in common in G(P). Thus, a straightforward
counting argument shows that the number of touching triplets (resp., quadru-
ples) in P is at most 24n

3 = 8n (resp., 8n
4 = 2n), finishing the proof of (ii) in

Theorem 1.2.

4. Proof of (i) in Theorem 1.2 using Theorem 1.4

Let P be an arbitrary packing of n unit balls in E
3. Let B stand for the unit ball

centered at the origin of E
3 and let P = {c1 +B, ..., cn +B}. Then, we take the

contact graph G(P) of P whose vertices are c1, ..., cn with an edge connected
between two vertices if ci +B and cj +B touch each other, i.e., dist(ci, cj) = 2.
Every touching triplet ci + B, cj + B, and ck + B (resp. touching quadruple
ci+B, cj +B, ck+B, and cl+B) of P corresponds to a regular triangle spanned
by ci, cj , and ck (resp. regular tetrahedron spanned by ci, cj , ck, and cl) of
edge length 2 in G(P).

Lemma 4.1. The number of regular triangles (resp., regular tetrahedra) of edge
length 2 sharing a vertex in G(P) is at most 25 (resp., 11).

Proof. Let the unit balls ci +B and cj +B of P be touching. Then the central
projection of cj + B from ci onto the boundary of ci + B is a spherical cap
of angular radius π/6, as seen in Fig. 4. By projecting each unit ball cj + B
of P that touches ci + B onto the boundary of ci + B, we get a packing of
spherical caps of angular radius of π/6 on the boundary of ci + B. Therefore,
Theorem 1.4 finishes the proof of Lemma 4.1. �
We now prove the desired upper bound on the number of the regular trian-
gles of edge length 2 in G(P). By Lemma 4.1, we have that there are at most
25 regular triangles in the contact graph G(P) sharing a vertex, so we count
25n touching triplets in P. Yet, since each triplet is counted at each of the
three vertices of the regular triangles, we divide by three to avoid over count-
ing, thus leading to the bound of at most 25n

3 touching triplets in P. Finally,
using Lemma 4.1 again, a similar counting argument yields that the number
of regular tetrahedra of edge length 2 in G(P) is at most 11n

4 .

5. The Polygon Lemmas on S
2 for Theorem 1.4

On S
2, we take a point set X = {x1, ...,xN} with minimum spherical distance

π/3 between any two points in X. The solution to the Newton-Gregory prob-
lem (of determining the maximum number of non-overlapping unit balls which
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Figure 4 Projecting a spherical cap between two unit balls

Figure 5 Three types of irregular triangles, types I, II, and
III from left to right. Dashed sides represent side lengths of
greater than π/3 and non-dashed sides represent side lengths
of exactly π/3

can touch a fixed unit ball) by Schütte and van der Waerden [16] implies that
N ≤ 12. Taking the Delaunay triangulation DX of X on S

2, we notice that
we can classify the triangles based on how many times a side length of greater
than π/3 occurs. (For many of the basic properties of Delaunay triangulations
we refer the interested reader to [5] as well as [11].) In fact, we say that an
irregular triangle in DX is of type R where R is the number of side lengths of
the triangle greater than π/3 (Fig. 5). We will reserve the term regular triangle
for the type 0 triangles which have side lengths all equal to π/3. For the sake of
completeness we note that if two points of X lie at (spherical) distance π

3 from
each other, then the geodesic line segment (i.e., great circular arc of length
π
3 ) connecting them is an edge of DX on S

2. Based on this we note also that
the method described in this section as well as in the following one is quite
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Figure 6 A triangulated C4 quadrilateral with side lengths
of π/3

general and applies to any triangulation of X on S
2 that possesses the above

mentioned edge property.

We now prove three lemmas, the Quadrilateral Lemma, the Pentagon Lemma,
and the Hexagon Lemma, which are needed for our proof of Theorem 1.4. We
note that, in what follows, the angles of a regular triangle (of side length π

3 )
have radian measure arccos(1/3) (= 70.528 . . .◦).

Let C4 denote a spherical quadrilateral of side lengths π/3 which triangulates
into two irregular triangles of type I. The Quadrilateral Lemma ensures that
C4 cannot exist in DX when there are two adjacent vertices of C4 say, v and
w such that all of the Delaunay triangles of DX , not in C4, having v or w as
a vertex are regular.

Lemma 5.1. (Quadrilateral Lemma) Let α and β denote the internal angles
of C4 subtended at adjacent vertices of C4 as shown in Fig. 6. If α ∈ {2π −
k arccos(1/3) | k = 1, 2, 3}, then C4 cannot exist in DX and if α = 2π −
4 arccos(1/3), then β /∈ {2π − k arccos(1/3) | k = 1, 2, 3, 4}.
Proof. If α = 2π − arccos(1/3) or α = 2π − 2 arccos(1/3), then C4 is non-
convex with α > π, a contradiction. So, either α = 2π − 3 arccos(1/3) or
α = 2π − 4 arccos(1/3). By the (first) law of cosines (see for example [14]),

a = arccos
(

1 + 3 cos α

4

)

From the symmetry of C4 about the diagonal and the first law of cosines,

β/2 = arccos
(

1 − cos a√
3 sin a

)

We now consider our possible cases for varying α listed in Table 1.

In Case (2) we have that β = 1.029 < π/3 and so, the corresponding two
vertices of C4 lie closer to each other than π

3 , a contradiction. In Case (1),
which is realizable, we have β /∈ {2π − k arccos(1/3) | k = 1, 2, 3, 4}. �
Let C5 denote a spherical pentagon of side lengths π/3 which triangulates into
two irregular triangles of type I and one irregular triangle of type II, as shown
in Fig. 7. The Pentagon Lemma ensures that C5 cannot exist in DX when all
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Table 1 Cases for the Quadrilateral Lemma

Cases α a β
(1) 1.359 1.151 2.373
(2) 2.590 1.970 1.029

Figure 7 A triangulated C5 pentagon with side lengths of π/3

of the Delaunay triangles of DX , not in C5, sharing a vertex in common with
C5 are regular.

Lemma 5.2. (Pentagon Lemma) Let α and β denote the non-adjacent internal
angles of C5 subtended at the vertices of the type I triangles of C5, and let ω
denote the interior angle of the type II triangle of C5 opposite to the only side
of the type II triangle with length π/3, as shown in Fig. 7. If α, β ∈ {2π −
k arccos(1/3) | k = 3, 4}, then α′ +β′ +ω /∈ {2π−k arccos(1/3) | k = 1, 2, 3, 4},
where α′ and β′ are the internal angles of the two type I irregular triangles not
equal to α and β, respectively.

Proof. Letting α, β ∈ {2π − k arccos(1/3) | k = 3, 4}, we can consider three
cases: (1) α = β = 2π − 4 arccos(1/3), (2) α = β = 2π − 3 arccos(1/3), and
(3) α �= β. Letting a and b denote the side lengths opposite to α and β in the
corresponding type I triangles, we can compute the side lengths a and b and
the internal angles α′, β′, ω by the first law of cosines,

a = arccos
(

1 + 3 cos α

4

)
, b = arccos

(
1 + 3 cos β

4

)

α′ = arccos
(

1 − cos a√
3 sin a

)
, β′ = arccos

(
1 − cos b√

3 sin b

)

ω = arccos
(

cos(π/3) − cos a cos b

sin a sin b

)

We now consider our possible cases for varying α and β listed in Table 2.

Therefore, we have that in each case,

α′ + β′ + ω /∈ {2π − k arccos(1/3) | k = 1, 2, 3, 4}. �
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Table 2 Cases for the Pentagon Lemma

Cases α β a b α′ β′ ω α′ + β′ + ω
(1) 1.359 1.359 1.151 1.151 1.1867 1.1867 1.158 3.532
(2) 2.590 2.590 1.970 1.970 0.5148 0.5148 1.147 2.176
(3) 1.359 2.590 1.151 1.970 1.1867 0.5148 0.671 2.373

Figure 8 A triangulated C6 hexagon with side lengths of π/3

Let C6 denote a spherical hexagon of side lengths π/3 which triangulates into
three irregular triangles of type I and one irregular triangle of type III, as
shown in Fig. 8. Let C ′

6 denote a spherical hexagon of side lengths π/3 which
triangulates into two irregular triangles of type I and two irregular triangles of
type II, as shown in Fig. 9. Let C ′′

6 denote a spherical hexagon of side lengths
π/3 which triangulates into two irregular triangles of type I and two irregular
triangles of type II, as shown in Fig. 10. The Hexagon Lemma ensures that
neither C6, C ′

6 nor C ′′
6 can exist in DX when all of the Delaunay triangles of

DX , not in C6, C ′
6 or C ′′

6 , sharing a vertex in common with either C6, C ′
6, or

C ′′
6 are regular. The cases of C6, C ′

6, and C ′′
6 hexagons are the only possible

Delaunay triangulations of a hexagon (into irregular ones), so they are the
only cases we need to consider for a spherical hexagon occurring as the union
of triangles in DX .

Lemma 5.3. (Hexagon Lemma) Let α, β, α′, β′, γ, and ω denote the internal
angles of C6 as shown in Fig. 8. If α, β, γ ∈ {2π − k arccos(1/3) | k = 3, 4},
then α′ + β′ + ω /∈ {2π − k arccos(1/3) | k = 1, 2, 3, 4}.
Let α, β, θ, β′, γ′, and ω denote the internal angles of C ′

6 as shown in Fig. 9.
If α, β ∈ {2π − k arccos(1/3) | k = 3, 4} and θ ∈ {2π − k arccos(1/3) | k =
1, 2, 3, 4}, then β′ + γ′ + ω /∈ {2π − k arccos(1/3) | k = 1, 2, 3, 4}.
Let α, β, θ, γ′, and ω denote the internal angles of C ′′

6 as shown in Fig. 10.
If α, β ∈ {2π − k arccos(1/3) | k = 3, 4} and θ ∈ {2π − k arccos(1/3) | k =
1, 2, 3, 4}, then ω + γ′ /∈ {2π − k arccos(1/3) | k = 1, 2, 3, 4}.
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Figure 9 A triangulated C ′
6 hexagon with side lengths of π/3

Figure 10 A triangulated C ′′
6 hexagon with side lengths of π/3

Proof. For the case of C6, let α, β, γ ∈ {2π − k arccos(1/3) | k = 3, 4} and let
a, b, and c denote the side lengths opposite to α, β, and γ in the corresponding
type I triangles. Then we can compute the side lengths a, b, and c and the
internal angles α′, β′, ω by the first law of cosines as,

a = arccos
(

1 + 3 cos α

4

)
, b = arccos

(
1 + 3 cos β

4

)

c = arccos
(

1 + 3 cos γ

4

)
, α′ = arccos

(
1 − cos a√

3 sin a

)

β′ = arccos
(

1 − cos b√
3 sin b

)
, ω = arccos

(
cos c − cos a cos b

sin a sin b

)

We now consider our possible cases for varying α, β, and γ. By symmetry we
need to look at only the cases listed in Table 3.

Therefore, we have that in each case,

α′ + β′ + ω /∈ {2π − k arccos(1/3) | k = 1, 2, 3, 4}.
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Table 3 Cases for C6 of the Hexagon Lemma

α β γ a b c
1.359 1.359 1.359 1.151 1.151 1.151
1.359 1.359 2.590 1.151 1.151 1.970
1.359 2.590 2.590 1.151 1.970 1.970
2.590 2.590 2.590 1.970 1.970 1.970
α β γ α′ β′ ω α′ + β′ + ω
1.359 1.359 1.359 1.186 1.186 1.277 3.650
1.359 1.359 2.590 1.186 1.186 2.298 4.672
1.359 2.590 2.590 1.186 0.514 1.848 3.549
2.590 2.590 2.590 0.514 0.514 2.260 3.290

For the case of C ′
6, let α, β ∈ {2π − k arccos(1/3) | k = 3, 4} and let θ ∈

{2π − k arccos(1/3) | k = 1, 2, 3, 4}. We use the formulas for a, b, c, α′, and β′

mentioned in the case of C6. Then, γ = θ − α′ and we compute,

γ′ = arccos
(

cos a − cos(π/3) cos c

sin(π/3) sin c

)
, ω = arccos

(
cos(π/3) − cos b cos c

sin b sin c

)

We now consider 16 cases by varying α, β, and θ listed in Table 4. For simplic-
ity, we have mentioned every case by disregarding any symmetries present in
C ′

6. Furthermore, observe that in the column of value for c, 0.149 < π/3 and
0.725 < π/3, so these cases are not realizable.

Therefore, we have that in each case,

β′ + γ′ + ω /∈ {2π − k arccos(1/3) | k = 1, 2, 3, 4}.

For the case of C ′′
6 , let α, β ∈ {2π − k arccos(1/3) | k = 3, 4} and let θ ∈

{2π − k arccos(1/3) | k = 1, 2, 3, 4}. We use the formulas for a, b, c, α′, and γ′

in the case of C6. Then, γ = θ − α′ and we compute,

ω = arccos
(

cos b − cos(π/3) cos c

sin(π/3) sin c

)

We now consider 16 cases by varying α, β, and θ listed in Table 5. For simplic-
ity, we have mentioned every case by disregarding any symmetries present in
C ′′

6 . Furthermore, observe that in the column of value for c, 0.149 < π/3 and
0.725 < π/3, so these cases are not realizable.

Therefore, we have that in each case, γ′ + ω /∈ {2π − k arccos(1/3) | k =
1, 2, 3, 4}. �

6. Proof of Theorem 1.4

We first mention a rather straightforward but important fact which will be
used throughout the following two sub-sections.
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Table 4 Cases for C ′
6 of the Hexagon Lemma

α β θ γ a b c
1.359 1.359 1.359 0.172 1.151 1.151 0.149
1.359 1.359 2.590 1.403 1.151 1.151 1.186
1.359 1.359 3.821 2.634 1.151 1.151 1.988
1.359 1.359 5.052 3.865 1.151 1.151 1.888
1.359 2.590 1.359 0.172 1.151 1.970 0.149
1.359 2.590 2.590 1.403 1.151 1.970 1.186
1.359 2.590 3.821 2.634 1.151 1.970 1.988
1.359 2.590 5.052 3.865 1.151 1.970 1.888
2.590 1.359 1.359 0.844 1.970 1.151 0.725
2.590 1.359 2.590 2.075 1.970 1.151 1.683
2.590 1.359 3.821 3.306 1.970 1.151 2.082
2.590 1.359 5.052 4.537 1.970 1.151 1.451
2.590 2.590 1.359 0.844 1.970 1.970 0.725
2.590 2.590 2.590 2.075 1.970 1.970 1.683
2.590 2.590 3.821 3.306 1.970 1.970 2.082
2.590 2.590 5.052 4.537 1.970 1.970 1.451
α β θ α′ β′ γ′ ω β′ + γ′ + ω
1.359 1.359 1.359 – – – – –
1.359 1.359 2.590 1.186 1.186 1.293 1.148 3.625
1.359 1.359 3.821 1.186 1.186 0.690 0.648 2.525
1.359 1.359 5.052 1.186 1.186 0.816 0.763 2.766
1.359 2.590 1.359 – – – – –
1.359 2.590 2.590 1.186 0.514 1.293 0.713 2.521
1.359 2.590 3.821 1.186 0.514 0.690 1.152 2.357
1.359 2.590 5.052 1.186 0.514 0.816 1.123 2.454
2.590 1.359 1.359 – – – – –
2.590 1.359 2.590 0.514 1.186 1.967 0.925 4.079
2.590 1.359 3.821 0.514 1.186 1.762 0.497 3.447
2.590 1.359 5.052 0.514 1.186 2.119 1.049 4.356
2.590 2.590 1.359 – – – – –
2.590 2.590 2.590 0.514 0.514 1.967 1.049 3.531
2.590 2.590 3.821 0.514 0.514 1.762 1.175 3.452
2.590 2.590 5.052 0.514 0.514 2.119 0.930 3.565

Remark 6.1. Let X be a point set on S
2 with minimum spherical distance

π/3. Then a point in X cannot be entirely surrounded by regular Delaunay
triangles of side length π/3 since 2π

arccos(1/3) /∈ N.

6.1. An upper bound on touching triplets on S
2

Our main goal is to show that the number of touching triplets in an arbitrary
packing of spherical caps of angular radius π/6 on S

2 is at most 11.
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Table 5 Cases for C ′′
6 of the Hexagon Lemma

α β θ α′ γ a b c
1.359 1.359 1.359 1.186 0.172 1.151 1.151 0.149
1.359 1.359 2.590 1.186 1.403 1.151 1.151 1.186
1.359 1.359 3.821 1.186 2.634 1.151 1.151 1.988
1.359 1.359 5.052 1.186 3.865 1.151 1.151 1.888
1.359 2.590 1.359 1.186 0.172 1.151 1.970 0.149
1.359 2.590 2.590 1.186 1.403 1.151 1.970 1.186
1.359 2.590 3.821 1.186 2.634 1.151 1.970 1.988
1.359 2.590 5.052 1.186 3.865 1.151 1.970 1.888
2.590 1.359 1.359 0.514 0.844 1.970 1.151 0.725
2.590 1.359 2.590 0.514 2.075 1.970 1.151 1.683
2.590 1.359 3.821 0.514 3.306 1.970 1.151 2.082
2.590 1.359 5.052 0.514 4.537 1.970 1.151 1.451
2.590 2.590 1.359 0.514 0.844 1.970 1.970 0.725
2.590 2.590 2.590 0.514 2.075 1.970 1.970 1.683
2.590 2.590 3.821 0.514 3.306 1.970 1.970 2.082
2.590 2.590 5.052 0.514 4.537 1.970 1.970 1.451
α β θ γ′ ω γ′ + ω
1.359 1.359 1.359 – – –
1.359 1.359 2.590 1.170 1.293 2.464
1.359 1.359 3.821 0.478 0.690 1.168
1.359 1.359 5.052 0.648 0.816 1.464
1.359 2.590 1.359 – – –
1.359 2.590 2.590 1.170 2.371 3.542
1.359 2.590 3.821 0.478 1.808 2.286
1.359 2.590 5.052 0.648 1.857 2.505
2.590 1.359 1.359 – – –
2.590 1.359 2.590 0.867 1.001 1.869
2.590 1.359 3.821 0.163 0.527 0.691
2.590 1.359 5.052 1.033 1.154 2.187
2.590 2.590 1.359 – – –
2.590 2.590 2.590 0.867 1.967 2.835
2.590 2.590 3.821 0.163 1.762 1.926
2.590 2.590 5.052 1.033 2.119 3.152

Let X = {x1, ...,xN} be a point set on S
2 with N ≤ 12 and minimum spherical

distance π/3 between any two points in X. Taking the Delaunay triangulation
DX of X on S

2, we let f be the number of faces, e be the number of edges, and
N be the number of vertices. Since DX is a triangulation of X on S

2, every
face is a triangle, and so 3f = 2e. Using Euler’s formula N − e + f = 2, it is
straightforward to see that f = 2N − 4.

Assume to the contrary that there exist at least 12 touching triplets in a pack-
ing of N spherical caps of angular radius π/6 on S

2 with the center points
forming X and with N ≤ 12.



Vol. 104 (2013) Contact graphs of unit sphere packings revisited 75

Assume that N = 12. Then f = 2N − 4 = 2(12) − 4 = 20, so there are 20
triangles in DX . We then have that DX consists of at least 12 regular trian-
gles (of side length π

3 ) and at most 8 irregular triangles. (Actually, for the
purpose of the proof below, any regular triangle of DX having side length
> π

3 is listed among the irregular ones.) In what follows we assume that the
number of irregular triangles is 8. Namely, if we have fewer than 8, then the
analysis of the cases is a simpler version of what we do here, so we leave it
to the reader. Now, we can determine the possible cases for the union of the
irregular triangles as 8 = 4 + 4 = 3 + 5 = 2 + 6 = 2 + 3 + 3 = 2 + 2 + 4 =
2 + 2 + 2 + 2, where each number represents a (dashed)side-to-(dashed)side
union of that many irregular triangles. We then have the following cases:
(1)12 One decagon (2)12 Two hexagons, (3)12 One pentagon and one hep-
tagon, (4)12 One quadrilateral and one octagon, (5)12 One quadrilateral and
two pentagons, (6)12 Two quadrilaterals and one hexagon, and (7)12 Four
quadrilaterals.

For (1)12, we have that there are 10 vertices of the decagon, so there exists
two vertices in X which are entirely surrounded by regular triangles. This
contradicts Remark 6.1.

For (2)12, we have that there are 12 vertices cumulatively from the two hexa-
gons, so since we have assumed N = 12, they are pairwise disjoint (see
Remark 6.1). Applying the Hexagon Lemma to either hexagon, we have a
contradiction since both hexagons are assumed to be entirely surrounded by
regular triangles.

For (3)12, we have that there are 12 vertices cumulatively from the pentagon
and the heptagon, so since we have assumed N = 12, they are pairwise disjoint
(see Remark 6.1). Applying the Pentagon Lemma to the pentagon, we have
a contradiction since the pentagon is assumed to be entirely surrounded by
regular triangles.

For (4)12, we have that there are 12 vertices cumulatively from the quadri-
lateral and the octagon, so since we have assumed N = 12, they are pairwise
disjoint (see Remark 6.1). Applying the Quadrilateral Lemma to the quadrilat-
eral, we have a contradiction since the quadrilateral is assumed to be entirely
surrounded by regular triangles.

For (5)12, we have that there are 14 vertices cumulatively from the quadri-
lateral and the two pentagons. If two of the polygons share an edge, then
there is either a quadrilateral or a pentagon which is entirely surrounded by
regular triangles, leading to a contradiction by the Quadrilateral Lemma or
Pentagon Lemma. If the three polygons share precisely one vertex in common,
then the Quadrilateral Lemma leads to a contradiction. So, the only possible
configuration left is to have one polygon C to share one vertex with another
polygon C ′ with the last polygon C ′′ sharing a vertex with C ′ (and with the
two shared vertices being distinct). Now, if C or C ′′ is a quadrilateral or if C ′

is a quadrilateral with the two shared vertices being adjacent in C ′, then the
Quadrilateral Lemma leads to a contradiction.
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Figure 11 The configuration described in case (5)12

Thus, we are left with the following configuration: C and C ′′ are pentagons
(of side length π

3 ) and C ′ is a quadrilateral (of side length π
3 ) with the two

shared vertices u and v being opposite in C ′. Referring to Fig. 11 for this
configuration, we let a be the distance between the vertices w and x and
b be the distance between the vertices w and y. Then by the proof of the
Quadrilateral Lemma, we have that α = 1.359 and β = 2.373. Given that the
triangles at u and v in Fig. 11 are assumed to be regular, we can compute b
as follows. Using the spherical law of cosines, we compute the following where
θ = 2π − (arccos 1

3 + β + γ) as seen in Fig. 11,

a = arccos
(

1 + 3 cos(2 arccos 1
3 )

4

)
= 1.91...

γ = arccos
(

cos π
3 − cos π

3 cos a

sin π
3 sin a

)
= 0.615...

b = arccos

(
cos a

2
+

√
3 sin a

2
cos θ

)
= 2.15...

Therefore, since b > 2π/3 = 2.09..., we have that this configuration cannot
exist as w must be identified, without loss of generality, with a vertex of the
pentagon C contradicting the rather obvious fact that the spherical diameter
of any pentagon with side lengths equal to π/3 is at most 2π/3.

For (6)12, we have that there are 14 vertices cumulatively from the two quad-
rilaterals and the hexagon. If two of the polygons share an edge, then there
is either a quadrilateral or a hexagon which is entirely surrounded by regular
triangles, leading to a contradiction by the Quadrilateral Lemma or Hexagon
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Lemma. If the three polygons share precisely one vertex in common, then the
Quadrilateral Lemma leads to a contradiction. So, the only possible configura-
tion left is to have one polygon C to share one vertex with another polygon C ′

with the last polygon C ′′ sharing a vertex with C ′ (and with the two shared
vertices being distinct). Here either C or C ′′ must be a quadrilateral and so
by applying the Quadrilateral Lemma we are led to a contradiction.

For (7)12, we show that the total spherical area of the 12 regular triangles (of
side length π

3 ) and of the four quadrilaterals (of side length π
3 ) is < 4π, a con-

tradiction. Indeed, the discrete isoperimetric inequality of spherical polygons
(see for example [4]) implies that the spherical area of a quadrilateral of side
length π

3 in S
2 is maximal when it is regular. Thus, the total spherical area of

the 12 regular triangles and of the 4 quadrilaterals in question is at most

12
(

6 arcsin
1√
3

− π

)
+ 4

(
8 arctan

√
2 − 2π

)
= 12.052 . . . < 4π = 12.566 . . .

which is a contradiction.

Since the cases (1)12, (2)12, (3)12, (4)12, (5)12, (6)12, and (7)12 all lead to a
contradiction, we have that the number of touching triplets in an arbitrary
packing of 12 spherical caps of angular radius π/6 on S

2 is at most 11.

Assume that N = 11, then f = 2N − 4 = 2(11) − 4 = 18, so there are 18
triangles in DX . Hence, by our indirect assumption, DX consists of at least 12
regular triangles and at most 6 irregular triangles. (Just as above, any regular
triangle of DX having side length > π

3 is listed among the irregular ones.)
In what follows we assume that the number of irregular triangles is 6 and
leave the analysis of the simpler case of less than 6 irregular triangles to the
reader. So, we can determine the possible cases for the union of the irregular
triangles as 6 = 3 + 3 = 2 + 4 = 2 + 2 + 2, where each number represents a
(dashed)side-to-(dashed)side union of that many irregular triangles. We then
have the following cases: (1)11 One octagon, (2)11 Two pentagons, (3)11 One
quadrilateral and one hexagon, and (4)11 Three quadrilaterals.

For (1)11, we have that there are 8 vertices of the octagon, so since we have
assumed N = 11, there are three vertices in X entirely surrounded by regular
triangles which is a contradiction (see Remark 6.1).

For (2)11 and (3)11, we have that there are 10 vertices cumulatively from the
two pentagons or from the quadrilateral and the hexagon, so since we have
assumed N = 11, this is a contradiction since there is one vertex in X entirely
surrounded by regular triangles (see Remark 6.1).

For (4)11, we have that there are 12 vertices cumulatively from the three quad-
rilaterals, so since we have assumed N = 11, exactly one vertex is shared by
the polygons. By applying the Quadrilateral Lemma to the quadrilateral which
does not share a vertex with any other quadrilateral, we arrive at a contradic-
tion.
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Since the cases (1)11, (2)11, (3)11, and (4)11 all lead to a contradiction, we have
that the number of touching triplets in an arbitrary packing of 11 spherical
caps with angular radius π/6 on S

2 is at most 11.

Assume that N = 10. Then f = 2N − 4 = 2(10) − 4 = 16 and so, there are
16 triangles in DX . Hence, by our indirect assumption, DX consists of at least
12 regular triangles and at most 4 irregular triangles. Based on 4 = 2 + 2 we
can determine the possible cases for the union of the irregular triangles (by
leaving the study of the simplier case of less than 4 irregular triangles to the
reader): (1)10 One hexagon, and (2)10 Two quadrilaterals.

For (1)10 as well as (2)10, we have that there is a vertex in X which is entirely
surrounded by regular triangles contradicting to Remark 6.1.

Since Case (1)10 and (2)10 both lead to a contradiction, we have that the
number of touching triplets in an arbitrary packing of 10 spherical caps with
angular radius π/6 on S

2 is at most 11.

Finally, assume that N ≤ 9. Hence, f ≤ 2(9) − 4 = 14, and by our indirect
assumption there are at least 12 regular triangles (of side length π

3 ) in DX

and at most two irregular ones whose union then must be a quadrilateral (of
side length π

3 ). This case is clearly impossible by the spherical area estimate
of (7)12.

This finishes our indirect proof on the number of touching triplets in Theo-
rem 1.4.

6.2. An upper bound on touching pairs on S
2

Our goal is to show that the number of touching pairs in an arbitrary packing
of spherical caps of angular radius π/6 on S

2 is at most 25. The proof pre-
sented here is indirect and it is based on the previous section. The details are
as follows.

Let X = {x1, ...,xN} be a point set on S
2 with N ≤ 12 and minimum spherical

distance π/3 between any two points in X. Taking the Delaunay triangulation
DX of X on S

2, we let f be the number of faces, e be the number of edges, and
N be the number of vertices. Since DX is a triangulation of X on S

2, every
face is a triangle, and so e = 3

2f . Moreover, just as in the previous section,
Euler’s formula implies that f = 2N − 4.

Now, assume to the contrary that there exist at least 26 touching pairs in a
packing of N spherical caps of angular radius π/6 on S

2 with the center points
forming X and with N ≤ 12. Then e = 3(N − 2) ≥ 26 implies that either
N = 12 or N = 11.

If N = 12, then f = 20 and e = 30. Hence, the indirect assumption implies
that the number of edges of length > π

3 of DX is at most 4 and so, there are
at most 8 irregular triangles in DX . (Here an irregular triangle of DX means a
triangle of S

2 different from the one having side lengths equal to π
3 .) Thus, one
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Figure 12 The Octahedral Construction for k = 4

can repeat the proof of the previous section under the case N = 12 leading to
a contradiction.

Finally, if N = 11, then f = 18 and e = 27. Hence, the indirect assumption
implies that the number of edges of length > π

3 of DX is at most 1 and so,
there are at most 2 irregular triangles in DX . (Here again an irregular triangle
of DX means a triangle of S

2 different from the one having side lengths equal
to π

3 .) Thus, one can repeat the proof of the previous section under the case
N = 11 leading to a contradiction.

This finishes our indirect proof on the number of touching pairs in Theorem 1.4.

7. Explicit constructions

7.1. The octahedral construction

We now consider an explicit construction of a unit sphere packing placed over
the face-centered cubic lattice for which we obtain a high number of touching
triplets and quadruples of unit balls in E

3. For any positive integer k ≥ 2, place
n(k) = 2k3+k

3 lattice points of the face-centered cubic lattice such that their
convex hull is a regular octahedron K ⊂ E

3 of edge length 2(k − 1) having
exactly k lattice points along each of its edges (see Fig. 12 for k = 4).

It is not hard to see via layer by layer cross-sections that the number of regular
tetrahedra of edge length 2 spanned by the lattice points in K is equal to

2
k−1∑
i=2

2i(i − 1) =
4(k − 2)(k − 1)k

3
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This means that we can pack n(k) = 2k3+k
3 unit balls forming an octahedral

shape in E
3 such that there are exactly N4(k) = 4(k−2)(k−1)k

3 touching qua-

druples. We note that 3
2n(k) > k3 implies

(
3
2

)2/3
n2/3(k) > k2, and observe

that n(k) < k3 implies n1/3(k) < k. With these bounds, we can bound N4(k)
in terms of n.

N4(k) =
4(k − 2)(k − 1)k

3
= 2

( 2
3
k3 +

1
3
k︸ ︷︷ ︸

n(k)

)
− 4k2 + 2k

> 2n(k) − 4
(

3
2

)2/3

n2/3(k) + 2n1/3(k),

finishing the proof of (iii) in Theorem 1.2 on touching quadruples.

We have seen that the number of regular tetrahedra of edge length 2 in the
above mentioned Octahedral Construction is equal to N4(k); we now consider
the number of regular triangles of side length 2 spanned by the lattice points
in K and label it by N3(k). We note that the volume of an octahedron of edge
length 2 is 8

√
2

3 moreover, the volume of a tetrahedron of edge length 2 is
√

8
3 .

Furthermore, the volume of K is equal to 8
√

2
3 (k − 1)3. Thus, the number of

octahedra of edge length 2 in the Octahedral Construction is equal to
8
√

2
3 (k − 1)3 − 4(k−2)(k−1)k

3

√
8

3

8
√

2
3

= (k − 1)3 − (k − 2)(k − 1)k
3

.

We also note that the number of regular triangles of side length 2 of the regular
triangle of side length 2(k − 1), which is the face of K, is equal to (k − 1)2.
Hence, the number of regular triangle faces of side length 2 (i.e., touching
triplets) in the Octahedral Construction is,

N3(k) =
1
2

(
4N4(k) + 8((k − 1)3 − (k − 2)(k − 1)k

3
(k)) + 8(k − 1)2

)

=
4
3
(k − 1)k(4k − 5).

Using the bounds introduced before the preceding remark, we can now bound
N3(k) in terms of n.

N3(k) =
4
3
(k − 1)k(4k − 5) = 8

( 2
3
k3 +

1
3
k︸ ︷︷ ︸

n(k)

)
− 12k2 + 4k

> 8n(k) − 12
(

3
2

)2/3

n2/3(k) + 4n1/3(k),

finishing the proof of (iii) in Theorem 1.2 on touching triplets.

7.2. Further constructions

We need to construct the corresponding polar coordinates for 12 points on
S

2 with minimum spherical distance π/3 spanning 10 regular triangles of side
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Figure 13 An explicit construction of 10 tetrahedra sharing
a vertex

length π/3. By taking the points with the polar coordinates listed in Table 6,
we can construct such a point set P as seen in Fig. 13.

Table 6 Polar coordinates of the points in P

Polar coordinates

v1

(
1, 0, 0

)
v2

(
1, π/3, 0

)
v3

(
1, π/3, arccos(1/3)

)
v4

(
1, π/3, 2 arccos(1/3)

)
v5

(
1, π/3, 3 arccos(1/3)

)
v6

(
1, π/3, 4 arccos(1/3)

)
v7

(
1, arccos(−7/18),− arctan(2

√
2/5)

)
v8

(
1, 2 arctan(

√
2), arccos(1/3)/2

)
v9

(
1, arccos(−7/18), π − arctan(34

√
2/19)

)
v10

(
1, 2 arctan(

√
2), 5 arccos(1/3)/2

)
v11

(
1, 2 arctan(

√
2), 7 arccos(1/3)/2

)
v12

(
1, arccos(−53/54), arctan(4

√
2/17

)
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Last but not least, we mention that one can generate 12 points on S
2 with

minimum spherical distance π/3 having 24 spherical line segments of length
π/3 spanned by the 12 points. If we place our points at the vertices of a
cubeoctahedron with diameter 2, then we satisfy these conditions.

References

[1] Bezdek, K (2002) On the maximum number of touching pairs in a finite packing
of translates of a convex body. J. Combin. Theory Ser. A 98:192–200

[2] Bezdek, K.: Contact numbers for congruent sphere packings in Euclidean 3-space.
Discrete Comput. Geom 48, 298–309 (2012)

[3] Conway, J.H., Sloane, N.J.A.: Low-dimensional lattices. VI. Voronoi reduction
of three-dimensional lattices. Proc. R. Soc. Lond. A 436, 55–68 (1992)
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365–376 (1965)

[13] Osserman, R.: (1978) The isoperimetric inequality. Bull. Am. Math. Soc. 84,
1182–1238

[14] Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds, 2nd edn. Springer, New
York (2006)

[15] Rogers, C.A.: Packing and Covering. Cambridge University Press, Cambridge
(1964)
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