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Abstract

To any graph we may associate a matrix which records information about its structure. The

goal of spectral graph theory is to see how the eigenvalues of such a matrix representation

relate to the structure of a graph.

In this thesis, we focus on a particular matrix representation of a graph, called the

normalized Laplacian matrix, which is defined as L = D−1/2(D − A)D−1/2, where D is the

diagonal matrix of degrees and A is the adjacency matrix of a graph. We first discuss some

basic properties about the spectrum and the largest eigenvalue of the normalized Laplacian.

We study graphs that are cospectral with respect to the normalized Laplacian eigenvalues.

Properties of graphs with few normalized Laplacian eigenvalues are discussed. We then

investigate the relationship that the normalized Laplacian eigenvalues have to the general

Randić index R−1(G) of a graph, defined as R−1(G) =
∑

x∼y
1

dxdy
, where dx is the degree of

the vertex x.

We next consider the energy of a simple graph with respect to its normalized Laplacian

eigenvalues, which we call the L-energy. The L-energy of a graph G is EL(G) =
∑n

i=1 |λi(L)−
1|, where λ1(L), . . . , λn(L) are the eigenvalues of L.

Over graphs of order n that contain no isolated vertices, we characterize the graphs with

minimal L-energy of 2 and maximal L-energy of 2bn/2c. The graphs of maximal L-energy

are disconnected, which leads to the question: “What are the connected graphs of order n

that have the maximum L-energy?”

The technique we use is to first bound the L-energy of a graph G in terms of its general

Randić index R−1(G). We highlight known results for R−1(G), most of which assume that

G is a tree. We extend an upper bound on R−1(G) from trees to connected graphs, which

in turn, provides a bound on the L-energy of a connected graph. We conjecture that the

maximal L-energy of a connected graph is equal to n√
2

asymptotically and provide a class of

graphs with this property.
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We also discuss the maximum change of L-energy and R−1(G) upon edge deletion. Fi-

nally, we provide bounds on the L-energy in terms of other parameters, one of which is the

energy with respect to the adjacency matrix eigenvalues.
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1 SPECTRAL GRAPH THEORY

1.1 Introduction to spectral graph theory

The foundations of spectral graph theory were laid in the 1950’s and 1960’s, however, its

origins can be traced back even earlier. In quantum chemistry, the ideas of spectral graph

theory can be found in a 1931 paper of Hückel [37] where eigenvalues of graphs are used to

represent the levels of energy of certain electrons. The well-known Matrix-Tree Theorem (for

example, see [17]) can be thought of as a result in spectral graph theory and was proved by

Brooks, Smith, Stone and Tutte [7] in 1940 and independently by Trent [63] in 1954. Many

authors hold that the Matrix-Tree Theorem is implicitly contained in Kirchhoff’s classic 1847

paper [39] (for more details consult [49, Chapter 5]).

Since the fundamental paper of Collatz and Sinogowitz [15] in 1957, spectral graph theory

has appeared frequently in the mathematical literature. In [15], the authors obtain a connec-

tion between the degrees of a graph and eigenvalues and make further observations regarding

graph spectra. Even earlier, Cvetković, Rowlinson and Simić [18] claim that the investiga-

tion between spectral and structural properties of graphs can be found in the unpublished

thesis of Wei [66] from 1952 and an unpublished summary of a 1956 paper by Lihtenbaum

[44] communicated at the 3rd Congress of Mathematicians of the U.S.S.R. Since then, spec-

tral graph theory has been well documented in several surveys and books (for example, see

[2, 3, 8, 16, 17, 18, 27, 60]).

The general idea in spectral graph theory is that to any graph we may associate a corre-

sponding matrix which records information about its structure. The fundamental problem

in spectral graph theory is to answer the following question:

Question 1.1.1 How do the eigenvalues of a matrix representation of a graph relate to the

structure of the graph?
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Thus, when studying spectral graph theory, one needs to be familiar with both graph

theory and tools of linear algebra.

In Chapter 1, we first give a brief overview of the notation, terminology and key results

from graph theory and matrix theory that will be used throughout this thesis. We then

investigate notions of the energy of a graph and the general Randić index of a graph.

In Chapter 2, we turn our focus to the normalized Laplacian matrix and discuss the

importance of the largest eigenvalue. Using Godsil-McKay switching, it is shown how to

construct cospectral graphs with respect to the normalized Laplacian eigenvalues. We dis-

cuss properties of graphs with two or three distinct normalized Laplacian eigenvalues. We

emphasize the relationship that the general Randić index has with the spectrum of the nor-

malized Laplacian. Then we highlight and rephrase results developed by Runge (in the

1970’s) in terms of L, which includes a Matrix-Tree Theorem and Coefficients Theorem for

L.

In Chapter 3, we discuss bounds on the general Randić index of a graph. Upper and lower

bounds are given in terms of the order of a graph, as well as the minimum and maximum

degrees. These bounds can be improved when restricted to the class of connected graphs.

We then look at the effect edge deletion has on the general Randić index.

In Chapter 4, we consider the energy of a graph with respect to its normalized Laplacian

eigenvalues, which we call the L-energy. Over graphs of order n that contain no isolated

vertices, we characterize the graphs with minimal and maximal L-energy, and discuss the

maximal L-energy over the class of connected graphs. We provide bounds on the L-energy in

terms of other parameters, one of which is the energy with respect to the adjacency matrix.

Finally, we look at the effect edge deletion has on the L-energy. We provide examples to show

that both L-energy and the general Randić index can decrease, stay the same or increase

upon edge deletion.

Lastly, in Chapter 5, we summarize and discuss some open problems and future consid-

erations.

Note that the results from Chapters 3 and 4 have been published in [11]. It should also

be mentioned that recent results on the normalized Laplacian energy have also appeared in

[6] under the name of Randić energy.
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1.2 Graph theory: Notation, definitions and key results

A paper written on the Seven Bridges of Königsberg problem, published by Euler in 1736,

is regarded as the first paper in the field of graph theory [3]. Briefly, the problem is to find

a walk through the city of Königsberg (see Figure 1.1) that would cross each bridge exactly

once. Euler showed that the problem has no solution. He noted that if every bridge is

traversed exactly once then the number of bridges touching each land mass must be even

(except possibly for the land masses chosen for the start and finish). By noting that all

four land masses in Figure 1.1 are touched by an odd number of bridges and since at most

two land masses can serve as the endpoints of a walk, the existence of a walk traversing

each bridge exactly once leads to a contradiction. Euler’s solution of the Seven Bridges of

Königsberg problem laid the foundations of graph theory and led to the concept of Eulerian

graphs.

Figure 1.1: Depiction of Königsberg highlighting the Pregel river and the layout of the
seven bridges.

The applications of graph theory reach far and wide. It is used in communication net-

works, computer science, physics, biology, chemistry, sociology and many other fields. In

this section we will go through the basic terminology and notation that will be used in this

thesis (for more details, see [3, 17, 23]).

A graph, denoted by G, is a pair (V,E) of sets such that the elements of E are a collection

of 2-element subsets of V . We call the elements of V the vertices of the graph, and the

elements of E the edges of the graph. We use the notation xy to denote an edge {x, y}, for

distinct x, y ∈ V . The number of vertices |V | of a graph G is its order. We often use the

phrase a graph on n vertices to mean that the graph has order n, and similarly, the phrase

3



a graph with m edges to mean that |E| = m.

Typically, a graph is pictured as a set of dots (which corresponds to the vertices), with

some pairs of dots joined by lines (with each line corresponding to an edge). In Figure 1.2 a

graph with vertex set V = {1, 2, 3, 4, 5, 6} and edge set E = {12, 15, 23, 24, 25, 36, 45, 56} is

illustrated.

t
4
t
6

t3t1 t2
t
5

�
�
��@

@
@@

Figure 1.2: An example of a graph on 6 vertices.

If e = xy is an edge of G, then we say vertex x is incident with e, and that e is an edge at

x. The two vertices incident with an edge are called its endpoints. Two vertices x, y of G are

adjacent, if xy is an edge of G. We often use the notation x ∼ y to mean that x is adjacent

to y in G. Similarly, two edges e, f of G are adjacent, if they have an endpoint in common.

A set of vertices (or edges) is called independent if no two elements of the set are adjacent.

If xy is an edge of G, we say y is a neighbour of x. We denote the set of neighbours of x by

Nx.

Let G = (V,E) and G′ = (V ′, E ′) be two graphs. We call G and G′ isomorphic if there is

a bijection φ : V → V ′ with xy ∈ E if and only if φ(x)φ(y) ∈ E ′, for all x, y ∈ V . We usually

do not distinguish between isomorphic graphs in the sense that relabeling the vertices of a

graph gives the “same” graph. The term graph in this thesis refers to an unlabeled graph

in the sense that individual vertices have no distinct identifications except through their

interconnectivity. If V ′ ⊆ V and E ′ ⊆ E, then we call G′ a subgraph of G. Further, G′ is an

induced subgraph of G if G′ is a subgraph of G and G′ contains all the edges xy ∈ E with

x, y ∈ V ′. If G′ is a subgraph of G with V ′ = V then we say G′ is a spanning subgraph of G.

Let S be a subset of vertices of V . We denote the graph obtained by deleting all the

vertices in S and their incident edges by G\S. If e is an edge of G, we denote by G − e

the graph obtained by removing the edge e from G. The complement Ḡ of a graph G is the

graph with the same vertex set as G, where any two distinct vertices are adjacent if and only

if they are non-adjacent in G.

The degree of a vertex x of G, denoted dx, is the number of edges at x. If there is more

than one graph in question, we write dGx to denote the degree of x in G. A vertex of degree
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0 is called an isolated vertex. The number dmin = min{dx|x ∈ V } is called the minimum

degree of G, while the number dmax = max{dx|x ∈ V } is called the maximum degree of G. If

each vertex has the same degree r, then G is called an r-regular graph, or simply, a regular

graph. A simple observation is that the number of edges in a graph can be expressed as

|E(G)| = 1

2

∑
x∈V

dx.

A graph on n vertices that is regular of degree n − 1 is called the complete graph and is

denoted by Kn. Illustrated in Figure 1.3 are the complete graphs with 3, 4 and 5 vertices.
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Figure 1.3: The complete graphs on 3, 4 and 5 vertices.

A walk in a graph G = (V,E) is a sequence of vertices {x1, x2, . . . , xt} with xixi+1 ∈ E
for all 1 ≤ i ≤ t− 1, where repetition is allowed amongst the xi’s. A path on n vertices is a

graph (V,E) with vertex set V = {x1, x2, . . . , xn} and edge set

E = {x1x2, x2x3, . . . , xn−1xn},

where the xi are all distinct. The number of edges of a path is its length. A path of length k

is commonly denoted by Pk and has k+1 vertices. We often denote a path as P = x1x2 . . . xn

and say P is a path from x1 to xn. If a path Pk from xr to xs is a subgraph of G then we

say G contains a path of length k from xr to xs. Illustrated in Figure 1.4 is a path of length

n− 1.

tx1 tx2 tx3 txn−1 txn. . .

Figure 1.4: A path on n vertices.

The distance between two vertices x, y in G, denoted dist(x, y), is the length of a shortest

path from x to y in G (if no such path exists we set dist(x, y) =∞). The greatest distance

between any pair of vertices in G is called the diameter of G and is denoted by diam(G).

A cycle on n vertices is a graph with vertex set V = {x1, x2, . . . , xn} and edge set

E = {x1x2, x2x3, . . . , xn−1xn, xnx1}, where the xi are all distinct. The number of edges of a
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cycle is its length. A cycle of length k is commonly denoted by Ck and has k vertices and k

edges. A cycle of odd length is called an odd cycle. If a cycle Ck is a subgraph of G then

we say G contains a cycle of length k. Illustrated in Figure 1.5 are the cycles on 3, 4 and 5

vertices.
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Figure 1.5: The cycle graphs on 3, 4 and 5 vertices.

A graph G is called connected if between any pair of vertices x, y of G, there is a path

contained in G between x and y. On the other hand, if there is a pair of vertices x, y of

G such that no path between x and y exists in G, we say G is disconnected. A maximal

connected subgraph of G is called a component of G.

A connected graph that does not contain any cycles is called a tree. A graph whose

components are all trees is called a forest. Let G be a graph (not necessarily a tree), then

we call a vertex of degree 1 a leaf. An edge incident to a leaf is a leaf edge. An edge not

incident to any leaf is a non-leaf edge. Every tree has at least two leaf edges. If a tree on

n vertices has n − 1 leaves, then this tree is called a star. The star graphs on 4, 5 and 6

vertices are illustrated in Figure 1.6. Every graph that is a star or a path is also a tree since

they do not contain any cycles.
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Figure 1.6: Star graphs on 4, 5 and 6 vertices.

Let k ≥ 2 be an integer. A graph is called k-partite if its vertices can be partitioned

into k disjoint sets so that no two vertices within the same set are adjacent. When k = 2,

we often call a 2-partite graph a bipartite graph. The partition classes of a k-partite graph

are called its parts. If in a k-partite graph, every pair of vertices from different parts are

adjacent, then the graph is called complete k-partite. The collection of all complete k-partite
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graphs (for all k) is referred to as the class of complete multipartite graphs. The complete

k-partite graph whose parts have sizes n1, n2, . . . , nk is denoted by Kn1,n2,...,nk
. A star graph

on n vertices can be thought of as a complete bipartite graph with two parts of sizes 1 and

n− 1, and hence is denoted by K1,n−1. The center of a star is the vertex in the part of size

1 of K1,n−1. The complete bipartite graph K3,5 is illustrated in Figure 1.7.
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Figure 1.7: The complete bipartite graph K3,5.

A k-partite graph is called semiregular if any two vertices in the same colour class have

the same degree. For example, the complete bipartite graph Kp,q is semiregular as each

vertex in the part with size p has degree q, and each vertex in the part of size q has degree

p. Bipartite graphs cannot contain an odd cycle and are characterized by this property.

Theorem 1.2.1 [23, Proposition 1.6.1] A graph is bipartite if and only if it contains no odd

cycles.

We next list two ways to construct graphs from two given graphs. The union of two

graphs G1 = (V1, E1) and G2 = (V2, E2), with disjoint vertex sets V1 and V2, is the graph

denoted G1∪G2 with vertex set V1∪V2 and edge set E1∪E2. See Figure 1.8 for an example

of the union of two graphs. The graph denoted by sG is s disjoint copies of the graph G

where we assume each copy of G has a distinct vertex set from every other copy, that is,

sG =
⋃s
i=1G.

t

t
tt
tttt

Figure 1.8: The graph union of the paths P2 and P4, that is, P2 ∪ P4.

7



The join of two graphs G1 = (V1, E1) and G2 = (V2, E2), with disjoint vertex sets V1 and

V2, is the graph denoted G1 ∨G2 with vertex set V1 ∪ V2 and edge set

E1 ∪ E2 ∪ {x1x2 : x1 ∈ V1, x2 ∈ V2}.

See Figure 1.9 for an example of the join of two graphs.

t

t
tt
ttHH

HHH
HH

�
��

�
��
�

XXXXXXX

���
��

��t
HHHH

HHH

Z
Z
Z
Z
Z
ZZ

XXXXXXX

���
���

�

t���
�
�
��

��
��

�
��

XXXXXXX

��
���

��

Figure 1.9: The graph join of the paths P2 and P4, that is, P2 ∨ P4.

It should be noted that there are other notions of graphs, such as, multigraphs, directed

graphs and hypergraphs. In this thesis, we will concentrate on simple graphs, in the sense

that each pair of vertices either has exactly 1 or 0 (undirected) edges between them, and

that no vertex has an edge going to itself. When analyzing the general Randić index of a

graph, defined later in Section 1.9, we will deal with weighted graphs, where each edge (or

vertex) of a graph is given a numerical value, called its weight.

1.3 Matrix representations of graphs

Given a graph G, we can form a matrix that contains information about the structure

of the graph. Some of the most commonly studied matrix representations of graphs are the

adjacency matrix, combinatorial Laplacian, signless Laplacian and the normalized Laplacian.

The adjacency matrix of a graph G = (V,E), denoted by A, is a matrix whose rows and

columns are indexed by the vertices of G, and is defined to have entries

A(x, y) =

{
1 if xy ∈ E,

0 otherwise.

The combinatorial Laplacian of a graph G = (V,E), denoted by L, is a matrix whose rows

and columns are indexed by the vertices of G, and is defined to have entries

L(x, y) =


dx if x = y,

−1 if xy ∈ E,

0 otherwise.
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This matrix is closely related to the adjacency matrix A of G. Let D be a diagonal matrix,

whose rows and columns are indexed by the vertices of G, with diagonal entries D(x, x) = dx.

Then,

L = D − A.

The matrix D+A is called the signless Laplacian of a graph and is denoted by |L|. It should

be noted that the signless Laplacian is sometimes denoted by L+ or Q in the literature,

however, we will use Q to denote D−1A in this thesis to match the notation in [17]. Finally,

the normalized Laplacian of a graph G = (V,E), denoted by L, is a matrix whose rows and

columns are indexed by the vertices of G, and is defined to have entries

L(x, y) =


1 if x = y and dy 6= 0,

− 1√
dxdy

if xy ∈ E,

0 otherwise.

We discuss the normalized Laplacian matrix in more detail in Chapter 2.

As an illustration, we list the four matrix representations defined above for the graph in

Figure 1.2 (using the labeling {1, 2, 3, 4, 5, 6} of the vertices to index the rows and columns

of the matrices):

A =



0 1 0 0 1 0

1 0 1 1 1 0

0 1 0 0 0 1

0 1 0 0 1 0

1 1 0 1 0 1

0 0 1 0 1 0


, L =



2 −1 0 0 −1 0

−1 4 −1 −1 −1 0

0 −1 2 0 0 −1

0 −1 0 2 −1 0

−1 −1 0 −1 4 −1

0 0 −1 0 −1 2


,

|L| =



2 1 0 0 1 0

1 4 1 1 1 0

0 1 2 0 0 1

0 1 0 2 1 0

1 1 0 1 4 1

0 0 1 0 1 2


, L =



1 − 1√
8

0 0 − 1√
8

0

− 1√
8

1 − 1√
8
− 1√

8
−1

4
0

0 − 1√
8

1 0 0 −1
2

0 − 1√
8

0 1 − 1√
8

0

− 1√
8
−1

4
0 − 1√

8
1 − 1√

8

0 0 −1
2

0 − 1√
8

1


.
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1.4 Linear algebra: Notation, definitions and key results

In this section we give some background information and list the basic tools of linear

algebra that will be used in this thesis (for more details, see [17, 36]). We use the notation

In for the identity matrix of order n, Jm×n for the m×n matrix where each entry is equal to

1, 1n for the vector of length n consisting of all ones, 0m×n for the m×n zero matrix, and 0n

for the zero vector of length n. We often ignore the subscripts when the size of the matrix

is clear from the context. A permutation matrix, usually denoted P , is a square matrix that

has exactly one entry consisting of a 1 in each row and each column, and 0’s elsewhere.

Let M be a real matrix of order n. The notation MT is used for the transpose of M . The

eigenvalues of M can be defined as the numbers λ satisfying Mx = λx for a non-zero vector

x. Each such vector x is called an eigenvector of the matrix M belonging to the eigenvalue

λ. The spectrum of a matrix is the set of its eigenvalues together with their multiplicities

(although it is more correct to say we are dealing with a multiset). Alternatively, one can

define the eigenvalues as being the zeros of the characteristic polynomial of M , that is, the

zeros of det(λI −M). The singular values of M can be defined as the numbers σ satisfying

Mv = σu and MTu = σv for two non-zero vectors u and v.

The set of eigenvectors belonging to an eigenvalue λ along with the zero vector forms the

eigenspace belonging to λ. The geometric multiplicity of λ is the dimension of its eigenspace.

The algebraic multiplicity of λ is the multiplicity of λ considered as a zero of the corresponding

characteristic polynomial. In general, the algebraic multiplicity of λ is greater than or equal

to the geometric multiplicity of λ (see [36]).

The well-known Cayley-Hamilton Theorem (for example, see [36]) says that each square

matrix M satisfies its own characteristic polynomial, that is, if f(λ) = det(λI −M), then

f(M) = 0. The minimal polynomial m(λ) of M is the monic polynomial of degree k such

that k is minimal under the condition m(M) = 0. It is known that (for example, see [17]):

• m(λ) is uniquely determined by M .

• If F (λ) is any polynomial with F (M) = 0, then m(λ)|F (λ).

• If {µ1, . . . , µp} are the distinct eigenvalues of M such that µi has algebraic multiplicity

mi, then

det(λI −M) = (λ− µ1)m1 · · · (λ− µp)mp ,
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and

m(λ) = (λ− µ1)q1 · · · (λ− µp)qp ,

for some 0 < qi ≤ mi, 1 ≤ i ≤ p.

A matrix M is called symmetric if MT = M . Two vectors x and y of the same length are

orthogonal to each other, written as x ⊥ y, if yTx = 0. A set of vectors {x1, . . . , xn} form an

orthonormal set if each pair of vectors are orthogonal to each other and xTi xi = 1 for each i.

Some of the key results about the eigenvalues of symmetric matrices are the following (for

example, see [17, 36]).

Theorem 1.4.1 [17, 36] Let M be a real symmetric matrix of order n. Then the following

hold:

(i) The eigenvalues of M are real numbers.

(ii) The geometric and algebraic multiplicities of any eigenvalue of M are equal.

(iii) The singular values of M are the absolute values of its eigenvalues.

(iv) The eigenvectors of M can be chosen to be orthogonal to each other. In fact, they can

be chosen to form an orthonormal basis of Rn.

If M is a square matrix of order n, we order and denote the singular values by

σ1(M) ≤ . . . ≤ σn(M).

The following theorem, first proven by Fan [24], is quite useful when dealing with singular

values.

Theorem 1.4.2 [24] Let A and B be square matrices of order n. Then

n∑
i=1

σi(A+B) ≤
n∑
i=1

σi(A) +
n∑
i=1

σi(B).

A real symmetric matrix M of order n is said to be positive semidefinite, if

xTMx ≥ 0,

for all x ∈ Rn. A key result is the following characterizations of positive semidefinite matrices.
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Theorem 1.4.3 [36] Let M be a real symmetric matrix of order n. Then the following are

equivalent:

(i) M is positive semidefinite, that is, xTMx ≥ 0, for all x ∈ Rn.

(ii) All eigenvalues of M are nonnegative.

(iii) There exists a matrix S such that M = SST .

Each of the four matrix representations defined in Section 1.3 are real symmetric matrices,

and hence by Theorem 1.4.1, their eigenvalues are real numbers and can be ordered. In this

thesis, if M is a real symmetric matrix of order n, we order and denote the eigenvalues by

λ1(M) ≤ . . . ≤ λn(M).

It should be noted that other authors sometimes start with λ0 instead of λ1, or reverse

the notation. When referring to the multiplicity of an eigenvalue, we mean the algebraic

multiplicity. It is well known that the trace of a square matrix M (that is, the sum of the

diagonal entries of M), denoted tr(M), is equal to the sum of its eigenvalues:

tr(M) =
n∑
i=1

λi(M).

Note that if M is a matrix of order n, then for a, b ∈ R, the eigenvalues of aM + bIn are

aλ1(M) + b, aλ2(M) + b, . . . , aλn(M) + b.

We next discuss how the eigenvalues of two matrices can be related. A matrix B is said

to be similar to a matrix C if there exists a nonsingular matrix S such that B = SCS−1,

where each of B, C and S are of order n. In the case that S is a permutation matrix then we

say B and C are permutation similar. Note that a permutation matrix P satisfies P−1 = P T .

Similarity is an equivalence relation on the set of matrices of order n. The next important

result says that similar matrices have the same spectrum.

Theorem 1.4.4 [36, Corollary 1.3.4] If B and C are similar matrices, then they have the

same eigenvalues, counting multiplicity.

If B and C are not similar but instead satisfy the equation B = SCST , then two useful

theorems relating their eigenvalues are Sylvester’s law of inertia and another due to Ostrowski
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(see [36, Theorem 4.5.9]), which we state for real symmetric matrices. The inertia of a real

symmetric matrix M , denoted by i(M), is the ordered triple (n1, n2, n3), where n1 (resp. n2

and n3) is the number of positive (resp. negative and zero) eigenvalues of M .

Theorem 1.4.5 [36, Theorem 4.5.8] (Sylvester’s law of inertia) Let B and C be real sym-

metric matrices of order n. There exists a nonsingular matrix S of order n such that

B = SCST if and only if i(B) = i(C).

Theorem 1.4.5 does not answer the question of how the magnitudes of the eigenvalues of

two matrices relate to each other. The next theorem, given by Ostrowski, gives a quantitative

form of Sylvester’s law of inertia relating the eigenvalues of a matrix M with those of SMST ,

for some nonsingular matrix S. First note that if S is a matrix, then SST is a symmetric

matrix.

Theorem 1.4.6 [36, Theorem 4.5.9] Let M be a real symmetric matrix of order n and S a

nonsingular matrix of order n. For each k = 1, 2, . . . , n, there exists a positive real number

θk such that

λ1(SST ) ≤ θk ≤ λn(SST )

and

λk(SMST ) = θkλk(M).

Consider the adjacency matrix A of a graph G. In some sense, the adjacency matrix

is not unique as relabeling the vertices of the graph produces another adjacency matrix.

This corresponds to simultaneously permuting the rows and columns of A. That is, there

is a permutation matrix P such that the graph with its vertices relabeled has adjacency

matrix PAP T . Thus, for each graph G, there is a class A(G) of adjacency matrices, with

two adjacency matrices A1 and A2 belonging to the same class if and only if A1 and A2 are

permutation similar. Therefore, a graph G (and its isomorphic images) may be uniquely

identified with its matrix class A(G). The eigenvalues of two adjacency matrices A1 and

A2 belonging to the same class are the same by Theorem 1.4.4. The eigenvectors can also

be thought of as being independent on the choice of labeling. This leads to the following

important observation in spectral graph theory.

Observation 1.4.7 [23] If two graphs are isomorphic then their adjacency matrices have

the same spectrum.
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Let G be a graph with a matrix representation M . The M-eigenvalues of G are the

eigenvalues of M together with their multiplicities. The M-spectrum of G is the multiset of

M -eigenvalues of G. In the case of the adjacency matrix, we simply refer to the A-eigenvalues

and A-spectrum as the eigenvalues of G and (ordinary) spectrum of G respectively.

The converse of Observation 1.4.7 is false, as there are non-isomorphic graphs that have

the same spectrum. Observation 1.4.7 also holds for the M -spectrum where M is one of L,

|L| or L, and the converse is also false for each of these matrix representations. If two graphs

have the same M -spectrum then we say the two graphs are cospectral with respect to the

M-eigenvalues. In Chapter 2, we construct examples of pairs of non-isomorphic cospectral

graphs with respect to the four matrix representations listed in Section 1.3. The study of

cospectral graphs is one of the most interesting and important problems in spectral graph

theory (see [20, 21]).

There is a lot known about the A-eigenvalues of a graph (for example, see [2, 8, 16, 17,

18, 27]) and a lot of study has been done regarding the L-eigenvalues and |L|-eigenvalues of

graphs. In Chapter 2 we discuss the spectrum of L in more detail.

1.5 Equitable partitions of matrices and graphs

Here we focus on a technique that can be used to compute some of the eigenvalues of

a matrix by investigating a corresponding matrix of smaller order. Suppose A is a real

symmetric matrix of order n whose rows and columns are indexed by X = {1, 2, . . . , n}. Let

{X1, X2, . . . , Xr} be a partition of X with each Xi 6= ∅. The characteristic matrix S is the

n× r matrix whose jth column is the characteristic vector of Xj, for j = 1, 2, . . . , r, that is,

S(i, j) =

{
1 if i ∈ Xj,

0 otherwise.

Let K be the diagonal matrix of order r whose (i, i)th entry is |Xi|. Then STS = K and K

is a nonsingular matrix as each Xi is nonempty.

Let A be partitioned according to {X1, X2, . . . , Xr}, that is,

A =


A1,1 · · · A1,r

...
...

Ar,1 · · · Ar,r

 ,
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where Ai,j, called a block of A, denotes the submatrix of A formed by rows in Xi and columns

in Xj. Let bi,j denote the average row sum of Ai,j. Then the matrix B of order r with (i, j)

entry equal to bi,j is called the quotient matrix of A over {X1, X2, . . . , Xr}. If the row sum of

each block Ai,j is constant then the partition {X1, X2, . . . , Xr} is called equitable (or regular)

and we have Ai,j1|Xj | = bi,j1|Xj |, for each 1 ≤ i, j ≤ r. Thus, AS = SB and it follows that

B = K−1STAS. This gives rise to the following result, which says if λ is an eigenvalue of B

then it is also an eigenvalue of A.

Theorem 1.5.1 [8, 27] Let {X1, X2, . . . , Xr} be an equitable partition of A with charac-

teristic matrix S. Let B be the quotient matrix of A over {X1, X2, . . . , Xr}. If v is an

eigenvector of B with corresponding eigenvalue λ, then Sv is an eigenvector of A with cor-

responding eigenvalue λ.

An equitable partition of a graph G is an equitable partition of its adjacency matrix, that

is, a partition of the vertex set V into parts {V1, V2, . . . , Vr} such that each vertex in Vi has

the same number of neighbours in Vj, for any j. In particular, the number of neighbours

that a vertex in Vi has in Vj is the (i, j)-entry of the quotient matrix B, namely bi,j. An

equivalent definition is that the subgraph of G induced by each part Vi is regular, and the

edges joining any two distinct parts Vi and Vj form a semiregular bipartite graph. An almost

equitable partition of a graph is a partition of the vertex set V into parts {V1, V2, . . . , Vr}
such that each vertex in Vi has the same number of neighbours in Vj, for any j 6= i. In this

case, the subgraph of G induced by each part Vi need not be regular, but the edges joining

any two distinct parts Vi and Vj must form a semiregular bipartite graph.

Example 1.5.2 We compute the ordinary spectrum of the complete bipartite graph Kp,q.

Consider Kp,q with parts X1 and X2, such that |X1| = p and |X2| = q. Then the adjacency

matrix can be partitioned as

A =

[
0p×p Jp×q

Jq×p 0q×q

]
.

It is easy to see that 0 is an eigenvalue of A with multiplicity p + q − 2 by noting that the
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vectors 

1

−1

0
...

0

0q


, . . . ,



1

0
...

0

−1

0q


,



0p

1

−1

0
...

0


, . . . ,



0p

1

0
...

0

−1


,

form a linearly independent set of p + q − 2 null vectors for A. To find the two remaining

eigenvalues we use the technique of equitable partitions.

Since each block of the partition of A has constant row sums, the partition {X1, X2} is

equitable. The quotient matrix B of A over {X1, X2} is the 2× 2 matrix

B =

[
0 q

p 0

]
,

whose entries are the (uniform) row sums of the blocks of A. The eigenvalues of B are

±√pq, and thus these are also eigenvalues of A by Theorem 1.5.1.

1.6 Spectra of common classes of graphs

In this section we list the eigenvalues for some common classes of graphs with respect to

the adjacency matrix, combinatorial Laplacian and the normalized Laplacian. We use the

superscript notation λ
(mi)
i to mean that λi appears in the spectrum with multiplicity mi.

Example 1.6.1 The complete graph Kn. The ordinary spectrum is

{(−1)(n−1), (n− 1)(1)},

the combinatorial Laplacian spectrum is

{0(1), n(n−1)},

and the normalized Laplacian spectrum is{
0(1),

(
n

n− 1

)(n−1)
}
.
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Example 1.6.2 The complete bipartite graph Kp,q. As shown in Example 1.5.2, the ordinary

spectrum is

{±√pq(1), 0(p+q−2)}.

The combinatorial Laplacian spectrum is

{0(1), p(q−1), q(p−1), (p+ q)(1)},

and the normalized Laplacian spectrum is{
0(1), 1(p+q−2), 2(1)

}
.

Example 1.6.3 The path Pn on n vertices. The ordinary spectrum is{
2 cos

(
πj

n+ 1

)
: j = 1, 2 . . . , n

}
,

the combinatorial Laplacian spectrum is{
2− 2 cos

(
πj

n

)
: j = 0, 1, . . . , n− 1

}
,

and the normalized Laplacian spectrum is{
1− cos

(
πj

n− 1

)
: j = 0, 1, . . . , n− 1

}
.

Example 1.6.4 The cycle Cn on n vertices. The ordinary spectrum is{
2 cos

(
2πj

n

)
: j = 0, 1, . . . , n− 1

}
,

the combinatorial Laplacian spectrum is{
2− 2 cos

(
2πj

n

)
: j = 0, 1, . . . , n− 1

}
,

and the normalized Laplacian spectrum is{
1− cos

(
2πj

n

)
: j = 0, 1, . . . , n− 1

}
.

Example 1.6.5 The Petersen graph is a graph on 10 vertices depicted in Figure 1.10.

The ordinary spectrum is

{(−2)(4), 1(5), 3(1)},
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Figure 1.10: The Petersen graph.

the combinatorial Laplacian spectrum is

{0(1), 2(5), 5(4)},

and the normalized Laplacian spectrum is{
0(1),

(
2

3

)(5)

,

(
5

3

)(4)
}
.

Example 1.6.6 Let G be a regular graph of degree r. Then we have the following relationship

amongst A, L and L:

L = rL = rI − A.

Thus, if the eigenvalues of one of A, L or L is known, the eigenvalues of the other two can

be completely determined through the equation λ(L) = rλ(L) = r − λ(A).

To illustrate, we note that the Petersen graph in Example 1.6.5 is regular of degree 3.

Thus, the L-spectrum and L-spectrum can be obtained from the ordinary spectrum using

λ(L) = 3− λ(A) and λ(L) = 1− λ(A)
3

.

1.7 Energy of graphs and matrices

If G is a graph of order n and M is a real symmetric matrix associated with G, then the

M-energy of G is

EM(G) =
n∑
i=1

∣∣∣∣λi(M)− tr(M)

n

∣∣∣∣ . (1.1)

The energy of a graph simply refers to using the adjacency matrix in (1.1). Gutman [29]

introduced the energy of a graph in 1978 from a theoretical chemistry perspective. Recently,
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the energy [30], Laplacian energy [32], signless Laplacian energy, distance energy [54] and

incidence energy [31] of a graph have received much interest. Along the same lines, the

energy of more general matrices and sequences has been studied (see [1, 50]). The goal of

this thesis is to analyze the L-energy of a graph, and determine how graph structure relates

to L-energy.

Throughout this thesis we will usually assume that the graphs encountered have no

isolated vertices, since they contribute little information and add technicalities to the argu-

ments. Thus, for a graph without isolated vertices, tr(L) = n. Formally, using (1.1) with M

taken to be L, the normalized Laplacian energy (or L-energy) of a graph G of order n is

EL(G) =
n∑
i=1

|λi(L)− 1|.

It is easy to see that this is equivalent to

EL(G) =
n∑
i=1

|λi(I − L)|, (1.2)

=
n∑
i=1

σi(I − L). (1.3)

Observe that Nikiforov [50] defines the energy of a matrix M of order n to be

E(M) =
n∑
i=1

σi(M),

in which case by (1.3) we are interested in E(I − L). In this thesis we use the M -energy

definition in (1.1) when referring to the energy of a real symmetric matrix.

1.8 Energy in terms of mean deviations

The energy of a matrix can be thought of as the deviation of its eigenvalues from the

mean. In particular, given a data set X = {x1, x2, . . . , xn} of real numbers, the mean absolute

deviation (often called the mean deviation) is defined by

MD(X) =
1

n

n∑
i=1

|xi − x̄|,

where x̄ is the arithmetic mean of the distribution. Often in statistical dispersion, the mean

is replaced by the median in the above formula (or some other chosen measure of central
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tendency of the data set). Statistical dispersion and central tendency are the most used

properties of distributions. The focus of statistical dispersion is on measuring the spread

in a variable or probability distribution while central tendency relates to the way in which

data tend to cluster around some value. The mean deviation tells us the average amount

that the data values deviate from the mean and is an intuitive and reasonable measure

of dispersion. However, in practice, the average of the squared deviations from the mean,

called the variance, is preferred. The variance of a data set X = {x1, x2, . . . , xn}, denoted

by Var(X), is defined to be

Var(X) =
1

n

n∑
i=1

(xi − x̄)2.

The standard deviation is the square root of the variance. The mean deviation is an important

descriptive statistic but the standard deviation is more frequently encountered in statistics.

This is because the absolute value in mean deviation makes analytical calculations more

complicated than using the standard deviation.

An easy application of the Cauchy-Schwarz inequality gives that the mean deviation is a

lower bound on the standard deviation, in other words

MD(X) ≤
√

Var(X).

Hence,
n∑
i=1

|xi − x̄| ≤

√√√√n
n∑
i=1

(xi − x̄)2.

If M is a real symmetric matrix of order n associated with G, then

EM(G) = n ·MD({λ1(M), λ2(M), . . . , λn(M)})

≤

√√√√n

n∑
i=1

(
λi(M)− tr(M)

n

)2

.

Many of the upper bounds for different types of energy stated in the literature are in fact

instances of the bound above (for example, see [11, 32, 47, 54]).
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1.9 The general Randić index of graphs

Let G be a graph of order n (with no isolated vertices). A well studied parameter of G

is the general Randić index Rα(G), defined as

Rα(G) =
∑
x∼y

(dxdy)
α , (1.4)

where the summation is over all (unordered) edges xy in G, and α 6= 0 is a fixed real

number. In 1975, Randić [55] proposed a topological index R (with α = −1
2
) under the

name ‘branching index’. In 1998, Bollobás and Erdős [4] generalized this index by replacing

the −1/2 with any real number α (as defined in (1.4)). The papers [41, 42] survey recent

results on the general Randić index of graphs with an emphasis on trees and chemical graphs.

In Chapter 2 we will focus on the case when α = −1 and show its importance to L-energy

and the spectrum of L.

The general Randić index when α = −1 is

R−1(G) =
∑
x∼y

1

dxdy
. (1.5)

We now rewrite the above summation as a double summation using the following equation:

2
∑
x∼y

f(x, y) =
∑
y∈V

∑
x
x∼y

f(x, y), (1.6)

where ∑
x
x∼y

f(x, y)

represents the sum over all (unordered) edges xy in G that are incident to a fixed vertex y

in the vertex set V of G. By rewriting (1.5) we obtain,

R−1(G) =
1

2

∑
y∈V

1

dy

∑
x
x∼y

1

dx
. (1.7)

Using (1.5), the quantity R−1(G) can be found by putting a weight of 1
dxdy

on each edge

xy of G (which we call the weight of edge xy), and then summing the weights over all the

edges of G. Alternatively, using (1.7), R−1(G) can be found by putting a weight of

1

2dy

∑
x
x∼y

1

dx

21



on each vertex y of G (which we call the weight of vertex y), and then summing the weights

over all the vertices of G.

It is easy to compute R−1(G) for common classes of graphs by using an edge weighted

graph as described above. We illustrate this below by computing R−1(G) for a path, complete

bipartite graphs and regular graphs.

Example 1.9.1 If G is a path on n vertices, then the leaf edges will have a weight of 1
2

each

and every other edge will have a weight of 1
4

(see Figure 1.11).

t 1
2 t 1

4 t 1
4
· · · 1

4 t 1
2 t. . .

Figure 1.11: The (edge) weighted graph of a path corresponding to R−1(G).

Hence, R−1(G) = (n− 3) · 1
4

+ 2 · 1
2

= n+1
4

.

Example 1.9.2 If G is a complete bipartite graph, Kp,q, then every edge will have weight
1
pq

. Since there are pq edges, we have that R−1(G) = 1.

Example 1.9.3 If G is an r-regular graph of order n, then every edge will have weight 1
r2

.

Since there are nr
2

edges, we have that R−1(G) = n
2r

. In particular, the complete graph has

R−1(G) = n
2(n−1)

. For n even, the graph G that is the disjoint union of n
2

paths of length 1

has R−1(G) = n
2
.
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2 EIGENVALUES OF THE NORMALIZED

LAPLACIAN

2.1 Introduction

In the literature, the adjacency matrix and combinatorial Laplacian have been more

widely used than the normalized Laplacian. One reason for this is because the normalized

Laplacian is a rather new tool which has rather recently (mid 1990’s) been popularized by

Chung [12]. One of the original motivations for defining the normalized Laplacian was to

be able to deal more naturally with non-regular graphs. In some situations the normalized

Laplacian is a more natural tool that works better than the adjacency matrix or combinatorial

Laplacian. In particular, when dealing with random walks, the normalized Laplacian is a

natural choice, as demonstrated in Section 2.3. This is because Q = D−1A is the transition

matrix of a Markov chain which has the same eigenvalues as I − L. The spectrum of Q is

studied in [17] and was the viewpoint of Runge’s dissertation in 1976 (see [56]).

In this chapter, we focus on the spectrum of the normalized Laplacian matrix of a graph.

We first list some basic properties of the spectrum and discuss the relationship between

simple random walks on graphs and normalized Laplacian eigenvalues. We then discuss the

importance of the largest eigenvalue of L and its relationship to bipartite graphs. Next

we construct cospectral graphs with respect to the L-eigenvalues by using Godsil-McKay

switching. The graphs constructed answer two questions asked by Butler in [9]. We then

look at properties of graphs with two or three distinct normalized Laplacian eigenvalues. The

case that a graph has a vertex of degree 1 and exactly three distinct L-eigenvalues is looked

at. We next outline the important relationship that the general Randić index has with the

spectrum of the normalized Laplacian. Finally, we rewrite some of the results developed by

Runge in the 1970’s in terms of the L-eigenvalues. This includes a Matrix-Tree Theorem

and Coefficients Theorem for L.
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2.2 Basic facts about the spectrum

Let G be a graph of order n. As L is a real symmetric matrix, the eigenvalues are real

numbers. We note that normalized Laplacian L of G is a positive semidefinite matrix. To

see this, let S be the matrix, whose rows are indexed by the vertices of G and whose columns

are indexed by the edges of G (where each edge e = xy is thought of as an ordered 2-tuple

(x, y)), that has entries

S(u, e) =


1√
dx

if e = xy and u = x,

− 1√
dy

if e = xy and u = y,

0 otherwise.

The choice of signs can actually be arbitrary so long as in each column (corresponding to an

edge of G) there is one positive entry and one negative entry. Then L = SST . Therefore,

by Theorem 1.4.3, all of the eigenvalues of L are nonnegative.

Recall that D is the diagonal matrix of vertex degrees of a graph, namely,

D(u, v) =

{
du if u = v,

0 otherwise.

It is easy to see that D1/21 is an eigenvector of L with eigenvalue 0. Thus, we assume the

eigenvalues of L are

0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L).

For graphs without isolated vertices, the normalized Laplacian L has the following rela-

tionship to L, A and D,

L = D−1/2LD−1/2,

= D−1/2(D − A)D−1/2,

= I −D−1/2AD−1/2.

As mentioned in Example 1.6.6, if G is a regular graph then the eigenvalues of A, L and L
are related by scaling factors and translations. However, for general graphs, the eigenvalues

of A, L and L behave quite differently.

Using Sylvester’s law of inertia (see Theorem 1.4.5), we can relate the eigenvalues of L
and A. In particular,

i(I − L) = i(D−1/2AD−1/2) = i(A).
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Hence, the multiplicity of 0 as an eigenvalue for A equals the multiplicity of 1 as an eigenvalue

for L. Further, positive (resp. negative) eigenvalues of A correspond to eigenvalues in [0, 1)

(resp. (1,∞)) for L.

To get an idea of how the magnitudes of the eigenvalues between L and A (as well as L and

L) relate, we use Theorem 1.4.6. Part (i) of the next theorem was first proved independently

by Butler [10, Theorem 4] using the Courant-Fischer Theorem (see [36, Theorem 4.2.11]).

We provide a new proof for part (i) and use this proof technique to obtain a relationship

between the eigenvalues of L and A in part (ii).

Theorem 2.2.1 Let G be a graph of order n with no isolated vertices. Suppose that G has

minimum degree dmin and maximum degree dmax. Let s be such that

λ1(A) ≤ · · · ≤ λs(A) ≤ 0 < λs+1(A) ≤ · · · ≤ λn(A).

Then the following statements hold.

(i) [10, Theorem 4] For each 1 ≤ k ≤ n,

λk(L)

dmax

≤ λk(L) ≤ λk(L)

dmin

.

(ii) For each 1 ≤ k ≤ n,

|λn−k+1(A)|
dmax

≤ |1− λk(L)| ≤ |λn−k+1(A)|
dmin

.

In particular, for each 1 ≤ k ≤ n− s,

1− λn−k+1(A)

dmin

≤ λk(L) ≤ 1− λn−k+1(A)

dmax

,

and for each n− s+ 1 ≤ k ≤ n,

1− λn−k+1(A)

dmax

≤ λk(L) ≤ 1− λn−k+1(A)

dmin

.

Proof. For (i), let M be the Laplacian matrix L and S be the matrix D−1/2 in Theorem

1.4.6. As D−1/2 is nonsingular, for each k = 1, 2, . . . , n, there is a positive real number θk

such that
1

dmax

= λ1(D−1) ≤ θk ≤ λn(D−1) =
1

dmin
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and

λk(L) = θkλk(L).

Thus (i) now follows as the eigenvalues of both L and L are nonnegative.

For (ii), let M be the adjacency matrix A and S be the matrix D−1/2 in Theorem 1.4.6.

As D−1/2 is nonsingular, for each k = 1, 2, . . . , n, there is a positive real number θk such that

1

dmax

= λ1(D−1) ≤ θk ≤ λn(D−1) =
1

dmin

and

λk(I − L) = θkλk(A).

This is because D−1/2AD−1/2 = I −L. Using λk(I −L) = 1− λn−k+1(L) and a relabeling of

the indices gives,

1− λk(L) = θn−k+1λn−k+1(A),

from which (ii) follows.

A technique to obtain information about the eigenvalues of L relies on using the Rayleigh

quotient (see [8] and [36, Theorem 4.2.2]). Below, we use the notation 〈x1, . . . , xm〉 to

represent the span of the vectors {x1, . . . , xm}, and 〈x1, . . . , xm〉⊥ to represent the orthogonal

complement of 〈x1, . . . , xm〉, that is, the set of vectors y such that y is orthogonal to all vectors

in 〈x1, . . . , xm〉.
Let M be a real symmetric matrix of order n and {g1, g2, . . . , gn} be an orthonormal set

of eigenvectors of M corresponding to the eigenvalues

{λ1(M), λ2(M), . . . , λn(M)},

that is, Mgi = λi(M)gi, for each i. AsM is a real symmetric matrix, the span of {g1, g2, . . . , gn}
is equal to Rn. The Rayleigh Principle states that if g 6= 0n, then

λi(M) ≥ gTMg

gTg
, if g ∈ 〈g1, . . . , gi−1〉⊥,

and

λi(M) ≤ gTMg

gTg
, if g ∈ 〈g1, . . . , gi〉.

In both cases, equality implies that g is an eigenvector of M with eigenvalue λi(M).

Let G = (V,E) be a graph. We can view the eigenvectors g of L as functions which

assign to each vertex v of G a real value g(v). In particular, if V = {v1, v2, . . . , vn} and
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g = [γ1, γ2, . . . , γn]T , then g can be viewed as a function which assigns to each vertex vi the

real value γi, that is, g(vi) = γi. By letting g = D1/2f , we have

gTLg
gTg

=
fTD1/2LD1/2f

(D1/2f)TD1/2f
,

=
fTLf

fTDf
,

=

∑
u∼v

(f(u)− f(v))2

∑
v

f(v)2dv
.

Thus, we obtain the following formulas for λ2(L) and λn(L) (see [12] for more detail):

λ2(L) = inf
f⊥D1

∑
u∼v

(f(u)− f(v))2

∑
v

f(v)2dv
, (2.8)

λn(L) = sup
f 6=0

∑
u∼v

(f(u)− f(v))2

∑
v

f(v)2dv
. (2.9)

A vector f that satisfies equality in (2.8) or (2.9) is called a harmonic eigenfunction of L. If

f satisfies (2.8) with equality then

L
(
D1/2f

)
= λ2(L)

(
D1/2f

)
,

that is, D1/2f is an eigenvector of L with eigenvalue λ2(L). Similarly, if f satisfies (2.9) with

equality then D1/2f is an eigenvector of L with eigenvalue λn(L).

The next lemma lists several basic properties about the normalized Laplacian eigenvalues,

all of which can be found in [12].

Lemma 2.2.2 [12] Let G be a graph of order n ≥ 2 that contains no isolated vertices.

(1)
n∑
i=1

λi(L) = n.

(2) λ2(L) ≤ n

n− 1
with equality holding if and only if G is the complete graph on n vertices.

(3) λn(L) ≥ n

n− 1
with equality holding if and only if G is the complete graph on n vertices.
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(4) If G is not the complete graph then λ2(L) ≤ 1.

(5) If G is connected with m edges and diameter D, then λ2(L) ≥ 1
2mD

> 0.

(6) If λi(L) = 0 and λi+1(L) 6= 0, then G has exactly i connected components (that is, the

number of connected components of G is equal to the multiplicity of the eigenvalue 0).

(7) For each 1 ≤ i ≤ n, we have λi(L) ∈ [0, 2].

(8) The L-spectrum of a graph is the union of L-spectra of its connected components.

(9) λn(L) = 2 if and only if a connected component of G is bipartite.

(10) G is bipartite if and only if the number of connected components equals the multiplicity

of the eigenvalue 2.

(11) G is bipartite if and only if for each λi(L), the value 2− λi(L) is also an eigenvalue of

G.

Proof. We illustrate some parts of the proof to demonstrate how (2.8) and (2.9) can be used.

(1) This follows from tr(L) = n.

The inequalities in (2) and (3) follow from
n∑
i=2

λi(L) = n,

which implies that the average of {λ2(L), . . . , λn(L)} is n
n−1

.

(4) This can be illustrated by considering two nonadjacent vertices x, y, and using f̂

defined as

f̂(v) =


dy if v = x,

−dx if v = y,

0 otherwise,

along with (2.8).

(7) The upper bound of 2 uses (1.6) and (2.9), and the fact that

[f(u)− f(v)]2 ≤ 2f 2(u) + 2f 2(v).

(11) To see why the normalized Laplacian eigenvalues of a bipartite graph are symmetric

about 1 (including multiplicities), note that I − L can be written as[
0 B

BT 0

]
=

[
−I 0

0 I

][
0 −B
−BT 0

][
−I 0

0 I

]
.
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Thus, (I − L) and −(I − L) have the same spectrum for bipartite graphs.

The largest normalized Laplacian eigenvalue λn(L) tells us when a graph is bipartite. In

Section 2.4 we will look at λn(L) in more detail.

2.3 Relationship to random walks on graphs

In this section we investigate how the normalized Laplacian spectrum of a graph can

provide information about random walks on graphs. Applications of random walks on graphs

range from sampling problems, electrical networks, routing problems, queuing theory, and

even shuffling a deck of cards. For a survey paper about random walks on graphs see [46].

For more details regarding the relationship of random walks on graphs to the normalized

Laplacian see [10, 12]. It should be pointed out that as early as 1935, Bottema considered

the relationship between D−1A and random walks in a connected graph [5, 17]. All of the

details from this section are known results that come from [10, 12, 40, 46] and are meant to

illustrate the importance of the eigenvalues of L.

A random walk on a graph can be thought of as a walk where we start at a vertex in

the graph and at each time interval randomly pick an edge incident to the current vertex

to traverse, and repeat. It turns out that random walks on (simple, undirected) graphs are

examples of Markov chains. We first describe some terminology from stochastic processes

that will be used in this section which can be found in [40].

A discrete-time stochastic process is a random process evolving with discrete time. Specif-

ically, it is a collection of random variables {X1, X2, X3, . . .} indexed by time, where time is

a subset of {1, 2, 3, . . .}, and Xi takes values in the finite set S = {1, 2, . . . , n}. The possible

values for Xi are called the states of the system. A Markov chain is a discrete-time stochastic

process with the Markov property, namely that, given the present state (corresponding to

time t), the future state (at time t+ 1) and past states (at times before t) are independent:

Pr(Xt+1 = it+1|X1 = i1, . . . , Xt = it) = Pr(Xt+1 = it+1|Xt = it),

where Pr(A) represents the probability of event A. To describe the probabilities for such a

process we give the initial probability distribution

f(i) = Pr(X1 = i), i = 1, 2, . . . , n,

and the transition probabilities

Pr(Xt+1 = it+1|Xt = it).
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We will be dealing with time-homogeneous Markov chains where the transition probabilities

do not depend on time. That is,

Pr(Xt+1 = it+1|Xt = it) = p(it, it+1),

for some function p : S×S → [0, 1]. The transition matrix P for a Markov chain is the matrix

of order n whose (i, j)-entry is p(i, j). We say P is irreducible if for any i, j ∈ S, there exists

some k such that P k(i, j) > 0. If P is the transition matrix for an irreducible Markov chain,

we define the period of state i to be the greatest common divisor of {k ≥ 0 : P k(i, j) > 0}.
It is easy to show that all states have the same period, thus we can talk about the period of

P . If the period of P is one, then we call P aperiodic.

Let G = (V,E) be a graph with adjacency matrix A and matrix of degrees D. Consider

a Markov chain whose states are vertices in V . At each time interval, the chain chooses a

new state randomly from among the states adjacent to the current state. The transition

matrix for this chain is P = D−1A, whose (i, j)-entry gives the probability that a move is

made from vertex i to vertex j, in particular,

P (i, j) = (D−1A)(i, j) =


1

di
if i ∼ j,

0 otherwise.

A random walk is determined by the transition probabilities

P (i, j) = Pr(Xt+1 = j|Xt = i),

which are independent of t.

Let the vector f be an initial probability distribution. It is easy to see that the probability

distribution after k steps is fTP k. To see the connection with L, we note that the transition

matrix is similar to I − L through the equation:

P = D−1A = D−1/2(I − L)D1/2.

Thus, if λ is an eigenvalue of L, then 1− λ is an eigenvalue of P . In particular, 1 is always

an eigenvalue of P as 0 is always an eigenvalue of L.

A random walk in a graph is said to be ergodic if there is a unique stationary distribution

π such that

lim
k→∞

fT (D−1A)k = π.
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It is well known that necessary and sufficient conditions for the ergodicity of P are irre-

ducibility and aperiodicity of P .

A problem of interest is given any arbitrary initial distribution, determine the number of

steps k required for P k to be close to its stationary distribution. The transition matrix P

satisfies

1TnDP = 1TnD.

Therefore, the stationary distribution is

π =
1TnD∑n
i=1 di

.

We ask if for any initial distribution f , does fTP k converge to the stationary distribution?

We consider the convergence in the L2-norm (Euclidean norm). Note that different types of

measurements will give different bounds for the rate of convergence. Some other bounds can

be found in [12]. Let f be any initial probability distribution (so that fT1n = 1). As shown

in [10, 12], the Euclidean distance between the random walk after k steps and the stationary

distribution π is

||fTP k − π|| ≤ max
i 6=1
|1− λi(L)|kmaxi

√
di

mini
√
di
.

Thus, the L-eigenvalues can be used to get an estimate on the rate of convergence of a

random walk. In particular, the closer the L-eigenvalues (omitting 0) are gathered around

1, the faster we expect to converge to the stationary distribution. In turn, this provides an

estimate on the number of steps needed to produce random-like results.

It should be noted that as λi(L) ∈ [0, 2], we have

max
i 6=1
|1− λi(L)| ≤ 1.

As seen in Lemma 2.2.2, there are two ways maxi 6=1 |1 − λi(L)| can equal 1. The first is if

λ2(L) = 0, which implies the graph G is not connected. The second is if λn = 2, which

implies the graph has a bipartite component. Therefore, for a random walk to converge to

the stationary distribution it suffices to be on a graph that is connected and not bipartite.

A graph being connected is equivalent to the system being irreducible, and a graph being

non-bipartite is equivalent to the system being aperiodic. If maxi 6=1 |1− λi(L)| < 1, then we

have the existence and uniqueness of a stationary distribution as our random walk is ergodic.
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2.4 Discussion on the largest normalized Laplacian eigenvalue

In this section we will focus on (2.9) to obtain information about λn(L). By Lemma 2.2.2

we have the following bounds on λn(L):

n

n− 1
≤ λn(L) ≤ 2,

with equality in the lower bound if and only if G is the complete graph and equality in

the upper bound if and only if G contains a bipartite component. In what follows we show

an intuitive interpretation of λn(L). In particular, we show that the “closer” a graph is to

being bipartite, the closer λn(L) is to 2. It should be noted that a similar statement for

r-regular graphs and λ1(1
r
A) is quantified by Trevisan [64] by introducing the concept of the

bipartiteness ratio of a graph.

Let G = (V,E) be a graph and let S ⊆ V be a subset of the vertices. We denote the

complement of the set S by S̄, which is defined as S̄ = V \S. The volume of S is a quantity

that shows up a lot when dealing with the normalized Laplacian, and is defined to be the

sum of the degrees of the vertices in S, that is,

vol(S) =
∑
x∈S

dx.

Note that vol(V ) is equal to twice the number of edges in the graph and is often denoted by

vol(G). Given two subsets X, Y of the vertices of G, we define

e(X, Y ) = |{xy ∈ E : x ∈ X, y ∈ Y }|,

with the convention that edges in X ∩ Y are counted twice.

The following result provides a bound on λ2(L) and λn(L) based on a partition of the

vertex set of the graph into two disjoint subsets.

Lemma 2.4.1 Let G be a graph of order n. Then

0 = λ1(L) ≤ λ2(L) ≤ min
∅6=S⊂V

(
e(S, S̄)

vol(S)
+
e(S, S̄)

vol(S̄)

)

≤ max
∅6=S⊂V

(
e(S, S̄)

vol(S)
+
e(S, S̄)

vol(S̄)

)
≤ λn(L).
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Proof. Let ∅ 6= S ⊂ V and define f as follows,

f(u) =

{
α if u ∈ S,

β if u 6∈ S.

We have, ∑
u∼v

(f(u)− f(v))2

∑
v

f(v)2dv
=

(α− β)2e(S, S̄)

α2
∑
x∈S

dx + β2
∑
x∈S̄

dx
=

(α− β)2e(S, S̄)

α2vol(S) + β2vol(S̄)
.

Choosing α = −vol(S̄) and β = vol(S) gives∑
u∼v

(f(u)− f(v))2

∑
v

f(v)2dv
= e(S, S̄)

(
1

vol(S)
+

1

vol(S̄)

)
.

Note that with the choice of f , α and β above, we have (D1)Tf = 0. Then by (2.8) and

(2.9) we are done.

The upper bound on λ2(L) in Lemma 2.4.1 is related to isoperimetric problems. In

particular, when dealing with isoperimetric problems the following question is of importance.

Question 2.4.2 For a fixed number m, find a subset S with m ≤ vol(S) ≤ vol(S̄) such that

e(S, S̄) is as small as possible.

Cheeger constants are meant to answer this type of question. For S ⊂ V , define

hG(S) =
e(S, S̄)

min{vol(S), vol(S̄)}
.

The Cheeger constant hG of a graph G is defined as

hG = min
S
hG(S).

Then it is clear that

λ2(L) ≤ min
∅6=S⊂V

(
e(S, S̄)

vol(S)
+
e(S, S̄)

vol(S̄)

)
≤ 2hG.

The Cheeger constant is a well studied parameter and has been further related to λ2(L). In

particular, if G is a connected graph, λ2(L) ≥ h2
G

2
(see [12, Theorem 2.2]). By taking the
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minimum of vol(S) and vol(S̄) in the definition of the Cheeger constant, it seems that some

important information may be lost. We illustrate this by analyzing the bound on λn(L) and

keeping both vol(S) and vol(S̄) in our discussion.

Fix a graph G = (V,E) and let S ⊆ V . Let a1 represent the number of edges with both

endpoints in S, a2 represent the number of edges with both endpoints in S̄ and b = e(S, S̄).

Then the lower bound on λn(L) in Lemma 2.4.1 can be written as

λn(L) ≥
(

b

2a1 + b
+

b

2a2 + b

)
.

If the graph is bipartite, S can be chosen so that a1 = a2 = 0, giving λn(L) ≥ 2. Increasing

the number of edges between S and S̄ (i.e., increasing b), or decreasing the number of edges

with both ends in S or both ends in S̄ (i.e., decreasing a1 or a2), have the effect of increasing

the lower bound on λn(L). It is in this sense that the closer a graph is to being bipartite

(i.e., the more b edges or less a1, a2 edges there are), the closer λn(L) is to 2.

Lemma 2.4.1 is a special case of a modified version of [10, Theorem 36] and should also

be compared to [67, Lemma 4.28] where a lower bound on λn(L) is given in terms of the size

of the maximum cut of a graph. We note that Theorem 36 in [10] can be slightly improved

by noticing that the matrix B in the proof is singular, and hence, λn−m in the far right

summation can be excluded (as η1 = 0 can be ignored). We rewrite the Theorem (in terms

of our labeling of the eigenvalues) with the improvement of changing the m− 1 limit in the

far right summation to m− 2.

Theorem 2.4.3 [10, Theorem 36] Let G be a graph of order n with no isolated vertices. For

every partitioning of the vertices [n] = N1 ∪ · · · ∪Nm we have

m∑
i=1

λi(L) ≤ m−
m∑
i=1

e(Ni, Ni)

vol(Ni)
=

∑
1≤i<j≤m

e(Ni, Nj)

(
1

vol(Ni)
+

1

vol(Nj)

)
≤

m−2∑
i=0

λn−i.

Based on Lemma 2.4.1, we ask the question:

Question 2.4.4 For which graphs G does equality hold in

λn(L) ≥ max
∅6=S⊂V

(
e(S, S̄)

vol(S)
+
e(S, S̄)

vol(S̄)

)
?

In fact, for many graphs such as bipartite graphs, the complete graph, and the petal graph

(see [12, Example 1.12] or Example 2.6.7 with m = 2), the bound on λn(L) in Question 2.4.4

holds with equality. A partial answer to Question 2.4.4 is the following result.
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Lemma 2.4.5 Let G = (V,E) be a graph of order n such that there is a partition V = S∪ S̄
with S, S̄ 6= ∅ such that

λn(L) =
e(S, S̄)

vol(S)
+
e(S, S̄)

vol(S̄)
.

Then the following regularity conditions hold:

For each vertex u ∈ S,

e(u, S̄)

vol(u)
=
e(S, S̄)

vol(S)
, (2.10)

and for each vertex u ∈ S̄,

e(u, S)

vol(u)
=
e(S, S̄)

vol(S̄)
. (2.11)

In the above, it is understood that vol(u) = du and e(u,X) is the number of edges incident

to u of the form ux with x ∈ X.

Proof. Suppose that equality holds for the eigenvalue µ = λn(L) and some partition V = S∪S̄
with S, S̄ 6= ∅, that is,

µ =
e(S, S̄)

vol(S)
+
e(S, S̄)

vol(S̄)
.

Let the adjacency matrix of G follow the same partition as the vertices, that is[
A B

BT C

]
,

where the columns of A are indexed by elements in S and the columns of C are indexed by

elements in S̄. Similarly, let the matrix of degrees follow the same partition, that is[
DA 0

0 DC

]
.

For convenience, we let α = vol(S̄) and β = − vol(S). Then

µ =
e(S, S̄)

α
− e(S, S̄)

β
.

Since

f(u) =

{
α if u ∈ S,

β if u ∈ S̄,
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satisfies (2.9) with equality, it must be that g = D1/2f is an eigenvector of L with the

eigenvalue µ. We can write g as

g =

[
αD

1/2
A 1

βD
1/2
C 1

]
,

where the all ones vector 1 is assumed to have the appropriate size in each spot it is used.

The normalized Laplacian is

L =

[
I −D−1/2

A AD
−1/2
A −D−1/2

A BD
−1/2
C

−D−1/2
C BTD

−1/2
A I −D−1/2

C CD
−1/2
C

]
.

Since g is an eigenvector for L, we have

Lg =

[
(αD

−1/2
A )(DA1− A1− (β/α)B1)

(βD
−1/2
C )(−(α/β)BT1 +DC1− C1)

]
= µg.

Let u ∈ V and write du = d̂u + d̄u, where d̄u is the number of edges incident to u that have

one endpoint in S and one endpoint in S̄, and d̂u is the number of edges incident to u with

both endpoints in S or both endpoints in S̄. We can extend this notion in the obvious way

to

DA = D̂A + D̄A and DC = D̂C + D̄C .

We have

B1 = D̄A1, BT1 = D̄C1, A1 = D̂A1, C1 = D̂C1.

Then,

Lg =

[
αD

−1/2
A (DA − D̂A − (β/α)D̄A)1

βD
−1/2
C (−(α/β)D̄C +DC − D̂C)1

]
=

[
(1− β/α)D̄AD

−1
A (αD

1/2
A 1)

(1− α/β)D̄CD
−1
C (βD

1/2
C 1)

]
= µg.

Hence, for each vertex u ∈ S, (
1− β

α

)
d̄u
du

= µ,

and for each vertex u ∈ S̄, (
1− α

β

)
d̄u
du

= µ.

Thus, for each vertex u ∈ S,
d̄u
du

=
e(S, S̄)

vol(S)
,
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and for each vertex u ∈ S̄,
d̄u
du

=
e(S, S̄)

vol(S̄)
.

Hence, we require the regularity conditions (2.10) and (2.11) to be satisfied for the partition

V = S ∪ S̄.

It should be noted that the converse of Lemma 2.4.5 does not hold. If the regularity

conditions (2.10) and (2.11) are satisfied for some partition V = S ∪ S̄, then µ (as defined

in the proof) is guaranteed to be an eigenvalue of L since the vector g (as defined in the

proof) will be a corresponding eigenvector. However, this does not guarantee that µ will be

the largest eigenvalue.

Remark 2.4.6 Let G = (V,E) be a graph of order n such that the regularity conditions

(2.10) and (2.11) are satisfied for some partition V = S ∪ S̄, with S, S̄ 6= ∅. Then

µ =
e(S, S̄)

vol(S)
+
e(S, S̄)

vol(S̄)

is an L-eigenvalue of G.

We illustrate with an example to show that µ in Remark 2.4.6 may not always be the

largest normalized Laplacian eigenvalue.

Example 2.4.7 Let G be the graph in Figure 2.1. The partition V = S ∪ S̄ in the figure

satisfies the regularity conditions (2.10) and (2.11), thus, µ = 1 + 1
2

= 3
2

is an L-eigenvalue

of G. The L-eigenvalues of G (rounded to 3 decimal places where necessary) are

{0, 0.196, 0.887, 1.5, 1.5, 1.917} .

It is easy to see that there is no partition of V into two sets that satisfy the regularity

conditions (2.10) and (2.11) and gives equality in the bound in Question 2.4.4.

One way to construct graphs that satisfy the regularity conditions (2.10) and (2.11) in

Lemma 2.4.5 is to take the join of two regular graphs. In particular, we show that if G1 is

an r-regular graph on n vertices, G2 is an s-regular graph on m vertices, with r ≤ m/2 and

s ≤ n/2, then G1 ∨G2 satisfies Question 2.4.4 with equality.
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Figure 2.1: A graph satisfying the regularity conditions for a particular partition.

Example 2.4.8 (Join of regular graphs) Let G1 = (V1, E1) be an r-regular graph on n

vertices and G2 = (V2, E2) be an s-regular graph on m vertices. Suppose

0 = λ1 ≤ · · · ≤ λn ≤ 2

are the L-eigenvalues of G1 and

0 = µ1 ≤ · · · ≤ µn ≤ 2

are the L-eigenvalues of G2. Butler [10, Theorem 12] proved that the L-eigenvalues of G1∨G2

are

0,
m+ rλ2

m+ r
, . . . ,

m+ rλn
m+ r

,
n+ sµ2

n+ s
, . . . ,

n+ sµm
n+ s

,
m

m+ r
+

n

n+ s
.

If r ≤ m/2 and s ≤ n/2, then

m

m+ r
+

n

n+ s
≥ 2

3
+

2

3
=

4

3
.

For each λi with i 6= 1,
m+ rλi
m+ r

≤ m+ 2r

m+ r
≤ 4

3
.

For each µi with i 6= 1,
n+ sµi
n+ s

≤ n+ 2s

n+ s
≤ 4

3
.

Thus, when r ≤ m/2 and s ≤ n/2, m
m+r

+ n
n+s

is the largest normalized Laplacian eigenvalue

of G1 ∨ G2. In this case, G1 ∨ G2 satisfies Question 2.4.4 with equality using the vertex

partition S = V1 and S̄ = V2.

Finally, we remark that the two classes of graphs introduced in Section 2.6 in Examples

2.6.7 and 2.6.8 also satisfy Question 2.4.4 with equality.
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2.5 Cospectral graphs with respect to the normalized Laplacian

Here we look at pairs of nonisomorphic graphs that have the same M -spectrum, where M

is either A, L, |L| or L, although the results also hold for other matrix representations. Let

G1 and G2 be r-regular graphs of the same order. If G1 and G2 are cospectral with respect to

the A-eigenvalues, then they are also cospectral with respect to the L, |L| and L-eigenvalues

by Example 1.6.6 and noting that |L| = rI + A. In [9, Theorem 2.1], Butler provides a

construction of two nonisomorphic non-regular bipartite graphs which are cospectral with

respect to both the adjacency and normalized Laplacian eigenvalues by reflecting a base

bipartite graph in two different ways. However, the pairs of graphs that Butler constructs

are not cospectral with respect to the combinatorial Laplacian eigenvalues. He then asks:

• Is there an example of two non-regular graphs which are cospectral with respect to

the adjacency matrix, combinatorial Laplacian and normalized Laplacian at the same

time?

• Are there general constructions which can be used to make cospectral graphs with

respect to the normalized Laplacian which have arbitrarily high chromatic number?

Upon a discussion with S. Cioabă and W. Haemers [personal communication, February

3rd, 2010], Haemers noted that non-regular graphs that are cospectral with respect to L
(as well as A, L, and |L|) can be constructed using a technique due to Godsil and McKay.

We describe this technique in detail which is then used to answer the two questions stated

above.

In [26], Godsil and McKay consider a kind of switching operation on the edges of a graph

and give conditions under which the adjacency spectrum is unchanged by this operation.

We refer to their method as GM switching. This method of construction produces 72%

of the cospectral graphs on nine vertices with respect to the A-eigenvalues [16], and has

been applied to other matrix representations. For example, see [20, 21] where the authors

survey the cases for which the answer to the question “which graphs are determined by their

spectrum” is known for various matrix representations of graphs.

In the following new result, we show how GM switching can work for L. Note that the

next result is a special case of [33, Theorem 2] (which in turn, is a special case of the results

in [26]). For notational purposes, we use the convention that Js×0 and J0×s (resp. 0s×0 and
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00×s) do not appear in the matrices A and Â in Theorem 2.5.1 below in the case that t2 = 0

(resp. t3 = 0).

Theorem 2.5.1 Let A and Â be the following matrices of order n = s+ t:

A =


A1,1 N Js×t2 0s×t3

NT

Jt2×s A2,2

0t3×s


and

Â =


A1,1 (Js×t1 −N) Js×t2 0s×t3

(Js×t1 −N)T

Jt2×s A2,2

0t3×s

 ,
where N is a (0, 1)-matrix of size s× t1, A1,1 is a real symmetric matrix of order s, and A2,2

is a real symmetric matrix of order t, where t = t1 + t2 + t3, for s ≥ 4 even, t1 ≥ 2 even and

t2, t3 ≥ 0. Suppose for some r that

A1,11s = r1s, N1t1 =
t1
2

1s, and NT1s =
s

2
1t1 .

Then the matrices A and Â have the same spectrum.

Further, let D be a diagonal matrix of order n with diagonal entries D(i, i) equal the

sum of the entries in the ith row of A, for 1 ≤ i ≤ n. Let M be a linear combination of

products of nonnegative integer powers of A, Â, Jn, In and real powers of D. Let M̂ be the

matrix obtained by switching A and Â in the definition of M . Then M and M̂ have the same

spectrum.

Proof. We follow the same proof presented by Godsil and McKay [26]. Define a matrix Q of

order n as

Q =

[
2
s
Js − Is 0s×t

0t×s It

]
.

Then Q = Q−1 = QT . The sum of the entries in row i of A is equal to the sum of the entries

in row i of Â. Given the structure of A, D has the form

D =

[
(r + t1

2
+ t2)Is 0s×t

0t×s D̄

]
,
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where D̄ is a diagonal matrix of order t. For any α ∈ R, Q commutes with the matrix Dα,

that is, DαQ = QDα. Also note that QJn = JnQ = Jn and QAQ = Â. Therefore, if M is

any linear combination of products of nonnegative integer powers of A, Â, Jn, In and real

powers of D, and M̂ is the matrix obtained by switching A and Â in the definition of M ,

then QMQ = M̂ .

The phrase GM switching refers to the operation of replacing N in A with Js×t1 −N to

form Â. In the case that A is the adjacency matrix of a graph G, Theorem 2.5.1 allows us

construct cospectral graphs with respect to the A, L, |L|, and L-eigenvalues. This is because

the matrix of degrees D will be the same for both the graph G with adjacency matrix A and

the graph Ĝ with adjacency matrix Â that results after GM switching (under the conditions

of Theorem 2.5.1). Thus, if L = I − D−1/2AD−1/2 is the normalized Laplacian of G, then

L̂ = I − D−1/2ÂD−1/2 will be the normalized Laplacian of Ĝ. However, in order to use

Theorem 2.5.1 for graphs, there are many conditions that the graph must satisfy.

Let A be the adjacency matrix of a graph G = (V,E) that satisfies the conditions in

Theorem 2.5.1. Partition V the same way A is partitioned, that is, V = S ∪ T1 ∪ T2 ∪ T3,

where S is the set of vertices of G corresponding to the columns of A1,1, T1 is the vertices of

G corresponding to the columns of N , T2 is the vertices of G corresponding to the columns

of Js×t2 , and T3 is the vertices of G corresponding to the columns of 0s×t3 . Then for A to

satisfy the conditions in Theorem 2.5.1 we require the following properties of G:

• The induced subgraph of G on the vertices in S must be regular.

• Each vertex in S must have the same degree in G.

• Each vertex in S must be adjacent to exactly half of the vertices in T1.

• Each vertex in T1 must be adjacent to exactly half of the vertices in S.

• Each vertex in T2 must be adjacent to every vertex in S.

• Each vertex in T3 must not be adjacent to any vertex in S.

Although these conditions are quite restrictive, we illustrate that Theorem 2.5.1 can produce

many pairs of nonisomorphic non-regular cospectral graphs with respect to various matrix

representations of graphs.
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Example 2.5.2 Consider s = 4 and t1 = 6 in Theorem 2.5.1 and partition V = S ∪ T1 ∪
T2 ∪ T3 as above. Then the edges between S and T1 must form a semiregular bipartite graph,

where vertices in S are adjacent to 3 vertices of T1 and vertices in T1 are adjacent to 2

vertices of S. One such possibility is the subgraph on the left in Figure 2.2.
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Figure 2.2: Using GM switching to generate cospectral graphs.

The edges of the graph on the left in Figure 2.2 represent the location of the 1’s in N in

the partition of A, and the edges of the graph on the right in Figure 2.2 represent the location

of the 1’s in (J4×6−N) in the partition of Â. What GM switching does is switches the edges

and nonedges between S and T1 while leaving the rest of the graph unchanged.

Let G be any graph with vertex partition V = S ∪ T1 ∪ T2 ∪ T3 that contains the graph on

the left in Figure 2.2 as a subgraph on S and T1 with |S| = 4 and |T1| = 6, such that:

1. There are exactly 12 edges between S and T1 in G.

2. The induced subgraph of G on the vertices in S is regular.

3. Each vertex not in S or T1 that is adjacent to a vertex in S is adjacent to every vertex

in S.

Form Ĝ by GM switching, that is, switch edges for nonedges between S and T1, and keep the

rest of the edges of G the same. Then by Theorem 2.5.1, the pair of graphs G and Ĝ are

cospectral with respect to the A, L, |L|, and L-eigenvalues.

One such example of a pair of nonismorphic non-regular graphs constructed using this

technique is illustrated in Figure 2.3. The reason the two graphs in Figure 2.3 are noniso-

morphic is because the graph on the left has a vertex adjacent to three vertices of degree 2,

while the graph on the right does not.
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Figure 2.3: A pair of nonisomorphic non-regular cospectral graphs with respect to the A, L,
|L| and L-eigenvalues.

Example 2.5.2 answers two questions that were asked by Butler in [9]. Figure 2.3 provides

an example of two non-regular graphs which are cospectral with respect to the adjacency

matrix, combinatorial Laplacian and normalized Laplacian at the same time. To construct

graphs with arbitrarily high chromatic number that are cospectral with respect to the nor-

malized Laplacian, we can start with Figure 2.2 and add vertices and edges as required

without violating properties 1, 2, and 3 that are listed in Example 2.5.2, and then check if

they are nonisomorphic. For example, attach a complete graph of order m to the bottom

right degree 1 vertices of the graphs in Figure 2.3 and take m to be arbitrarily large.

2.6 Properties of graphs with exactly two or three distinct L-

eigenvalues

In this section we look at the structure of graphs which have exactly two or three distinct

normalized Laplacian eigenvalues. In [19], van Dam and Haemers prove a nice result about

the structure of graphs that have at most three distinct Laplacian eigenvalues.

Theorem 2.6.1 [19] A connected graph G has at most three distinct L-eigenvalues if and

only if there exist integers µ and µ̄, such that any two distinct nonadjacent vertices have

exactly µ common neighbours, and any two adjacent vertices have exactly µ̄ common non-

neighbours.

In [19], van Dam and Haemers give a name to this a property. We say a non-complete

graph G has constant µ = µ(G) if any two vertices that are not adjacent have µ common

neighbours. Further, G has constant µ and µ̄ if G has constant µ = µ(G), and its complement
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Ḡ has constant µ̄ = µ(Ḡ). Thus, Theorem 2.6.1 says that a connected graph G has exactly

three distinct L-eigenvalues if and only if G has constant µ and µ̄. Furthermore, a connected

graph G has exactly two distinct L-eigenvalues if and only if G is the complete graph. To see

that the complete graph is the only connected graph with exactly two distinct L-eigenvalues,

let G be a connected graph on n vertices with Laplacian matrix L, and two distinct Laplacian

eigenvalues 0 and λ. By the Cayley Hamilton Theorem, (L− λI)L = L(L− λI) = 0, from

which it follows that every column of L − λI is a right null vector for L, and every row of

L− λI is a left null vector for L. Hence L− λI = cJ for some scalar c, and we find that G

must be complete.

It should be noted that graphs with constant µ and µ̄ generalize two known families of

graphs. In the case that these graphs are regular then they are exactly the strongly regular

graphs. In the case that µ = 1 then we have the geodetic graphs of diameter two.

Since we will be dealing with strongly regular graphs below, we describe them here in

more detail. Let G be a regular graph that is neither complete nor empty. Then G is

strongly regular with parameters (n, k, a, c) if it is k-regular, every pair of adjacent vertices

has a common neighbours, and every pair of distinct nonadjacent vertices has c common

neighbours. The following feasibility condition is well known (see [27] for more details):

k(k − a− 1) = (n− k − 1)c.

It is also well known that a connected regular graph with exactly three distinct A-eigenvalues

is strongly regular [27, Lemma 10.2.1]. A strongly regular graph with parameters(
n,
n− 1

2
,
n− 5

4
,
n− 1

4

)
,

is called a conference graph. An example of a conference graph is a cycle on 5 vertices.

Conference graphs are known to exist for small values of n that are allowed by the restrictions

(such as, n = 5, 9, 13, 17, 25, 29), and also for prime powers congruent to 1 (modulo 4)

(for example, Paley graphs [27]).

In an attempt to generalize Theorem 2.6.1, Wang, Fan and Tan [65] provide a condition

that is equivalent for a connected graph having exactly t distinct L-eigenvalues (note that

in the original statement of their result they omitted the word nonzero, which is necessary

for the lemma to be true and thus is added here).

Lemma 2.6.2 [65] Let G be a connected graph on n ≥ 3 vertices and fix 2 ≤ t ≤ n. Then G

has exactly t distinct L-eigenvalues if and only if there exists t− 1 distinct nonzero numbers
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µ1, . . . , µt−1 such that
t−1∏
i=1

(L− µiI) = (−1)t−1

∏t−1
i=1 µi
n

J.

Lemma 2.6.2 is a consequence of the Spectral Decomposition Theorem (along with mini-

mal polynomials) and is a special case of a more general theorem for real symmetric matrices.

In particular, let M be a real symmetric matrix of order n. Let µ1(M) < · · · < µt(M)

be the distinct eigenvalues of M and take an orthonormal basis {x1, . . . , xn} of eigenvectors

for M . For each fixed i, denote

Pi = xi1x
T
i1

+ · · ·+ xidx
T
id
,

where {xi1 , . . . , xid} is a basis of the eigenspace of µi(M) consisting of vectors from {x1, . . . , xn}.
The Spectral Decomposition Theorem says that

M =
t∑
i=1

µi(M)Pi,

such that P 2
i = Pi = P T

i , for 1 ≤ i ≤ t, and PiPj = 0, for i 6= j (see [18] for more details).

By the conditions on the Pi, for any polynomial f , we have,

f(M) =
t∑
i=1

f(µi(M))Pi.

In particular, let f be the polynomial f(x) =
∏t

i=2(x − µi(M)). For i 6= 1, we have

f(µi(M)) = 0, and for i = 1 we have, f(µ1(M)) =
∏t

i=2(µ1(M) − µi(M)). Applying

this to the normalized Laplacian where µ1(L) = 0 gives the following result.

Lemma 2.6.3 Let G be a connected graph on n ≥ 3 vertices with m edges and fix 2 ≤ t ≤ n.

Then G has exactly t distinct L-eigenvalues if and only if there exists t− 1 distinct nonzero

numbers µ1, . . . , µt−1 such that

t−1∏
i=1

(L − µiI) = (−1)t−1

(
t−1∏
i=1

µi

)
D1/2JD1/2

2m
, (2.12)

where D is the matrix of degrees of G.

Proof. One direction is clear by the Spectral Decomposition Theorem and the fact that

D1/21n is an eigenvector of L with eigenvalue 0. For the other direction, multiply both sides

of (2.12) by L. This implies the minimal polynomial of L is

x(x− µ1) · · · (x− µt−1),
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and hence L has exactly t distinct eigenvalues 0, µ1, . . . , µt−1.

A consequence of this is the following when t = 2.

Corollary 2.6.4 Let G be a connected graph on n ≥ 3 vertices. Then G has exactly two

distinct L-eigenvalues if and only if G is the complete graph.

Let G be a connected graph of order n that has m edges and exactly three distinct L-

eigenvalues. Then by Lemma 2.6.3, there are two distinct nonzero numbers µ1 < µ2 such

that

(L − µ1I)(L − µ2I) =
µ1µ2

2m
D1/2JD1/2. (2.13)

Hence, 0, µ1, and µ2 are the distinct eigenvalues of L. Since G is not the complete graph,

we have 0 < µ1 ≤ 1 and n
n−1

< µ2 ≤ 2. Suppose µ1 (resp. µ2) has multiplicity m1 (resp.

m2). Then as G is connected we have,

m1 +m2 = n− 1,

and

m1µ1 +m2µ2 = n.

If m2 = 1, then as µ1 ≤ 1 we obtain µ2 = 2 and hence the graph is a bipartite graph. If a

bipartite graph G is to have exactly three distinct L-eigenvalues, by the symmetry about 1,

the distinct L-eigenvalues must be 0, 1 and 2. A connected graph G has L-eigenvalues 0,

1 and 2 if and only if it is a complete bipartite graph. This follows from the result: G has

only one positive A-eigenvalue if and only if G is a complete multipartite graph plus isolated

vertices (see [17]).

By analyzing the entries of the matrices in (2.13), we have, for each i,∑
k∈Ni

1

dk
=
µ1µ2

2m
d2
i − (1− µ1)(1− µ2)di, (2.14)

where Ni is the neighbourhood of i. For each pair of vertices i, j with i ∼ j in G,∑
k∈Ni∩Nj

1

dk
=
µ1µ2

2m
didj + 2− µ1 − µ2, (2.15)

where in the case that Ni ∩Nj = ∅ the left side is 0. For each pair of vertices i, j with i 6∼ j

in G, ∑
k∈Ni∩Nj

1

dk
=
µ1µ2

2m
didj. (2.16)
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These three equations imply a number of things about the structure of a connected graph

with three distinct L-eigenvalues. For instance, any pair of nonadjacent vertices have at

least one common neighbour by (2.16), implying the diameter of G is 2 (this also follows

from a more general result that the diameter is at most one less than the number of distinct

eigenvalues). Also, in the case the graph is regular, (2.15) and (2.16) imply that any two

adjacent vertices have a constant number a of common neighbours, and any two distinct

nonadjacent vertices have a constant number c of common neighbours, thus, the graph must

be strongly regular (this also follows from noting that if G is regular with three distinct

L-eigenvalues, then it also has three distinct A-eigenvalues).

We summarize with the following remark.

Remark 2.6.5 Let G be a connected graph of order n. Then the following statements hold.

• If G has exactly three distinct L-eigenvalues then the diameter of G is 2.

• G has an L-eigenvalue with multiplicity n − 2 if and only if G is a complete bipartite

graph.

• If G is bipartite then G has exactly three distinct L-eigenvalues if and only if G is a

complete bipartite graph.

• If G is regular then G has exactly three distinct L-eigenvalues if and only if G is strongly

regular.

In [19], van Dam and Haemers show that in a graph with exactly three distinct L-

eigenvalues only two distinct vertex degrees can occur. This is not the case for graphs with

exactly three distinct L-eigenvalues as we will see below. In the next result, we first look

at the possibility of a vertex of degree 1 in the graph. An example of a graph satisfying

condition (ii) of the next Theorem is illustrated in Figure 2.4, where H is taken to be a cycle

on five vertices.

Theorem 2.6.6 Let G be a connected graph of order n ≥ 3 containing at least one vertex

of degree 1. Then G has exactly three distinct L-eigenvalues if and only if either

(i) G is a star, or

(ii) there exists a conference graph H such that G = {u}∨ (H ∪{v}), that is, G is the join

of a singleton vertex u with the union of a conference graph H and singleton vertex v.
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Figure 2.4: A graph with exactly three distinct L-eigenvalues and three distinct vertex
degrees.

Proof. Let G = (V,E) be a graph of order n with m edges and V = {v1, v2, . . . , vn}. Suppose

G has exactly three distinct L-eigenvalues, namely, 0 < µ1 < µ2. Without loss of generality,

suppose v1 is a vertex with degree 1 that is adjacent to v2. Since the diameter of G is 2, we

have that v2 has degree n − 1. Take any vertex vl ∈ V , with l 6= 1, 2, and suppose vl has

degree dl. Then by (2.16) with i = v1 and j = vl we have

dl =
2m

µ1µ2(n− 1)
,

implying that dl is constant for each l 6= 1, 2, say dl = k. Then, G has vertex degrees of 1,

n− 1 and k. If k = 1 then we have a star graph and G satisfies condition (i) of the theorem.

Thus, let us suppose k 6= 1. We will use (2.14), (2.15) and (2.16) to derive a system of four

equations. Using (2.14) with i = v1, we obtain,

1

n− 1
=
µ1µ2

2m
− (1− µ1)(1− µ2).

Using (2.15) with i = v1, j = v2, we obtain,

0 =
µ1µ2

2m
(n− 1) + 2− µ1 − µ2.

Using (2.14) with i = v3, we obtain,

1

n− 1
+
k − 1

k
=
µ1µ2

2m
k2 − (1− µ1)(1− µ2)k.

Using (2.16) with i = v1, j = v3, we obtain,

µ1µ2

2m
=

1

k(n− 1)
. (2.17)

This system of four equations reduces to a system of three by using the substitution from

(2.17) to replace the µ1µ2

2m
term in the first three equations:

(1− µ1)(1− µ2) =
1− k

k(n− 1)
, (2.18)
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µ1 + µ2 − 2 =
1

k
, (2.19)

(1− µ1)(1− µ2) =
k2 − k − (n− 1)(k − 1)

k2(n− 1)
. (2.20)

Then (2.18) and (2.20) allow us to solve for k in terms of n. We see that

2k2 − (n+ 1)k + (n− 1) = 0,

and hence, k = 1 or k = n−1
2

. Thus, k = n−1
2

. If u and v are vertices of degree k that are

adjacent, then by (2.15) (along with (2.17) and (2.19)), u and v have

|Nu ∩Nv| =
n− 3

4

common neighbours. If u and v are vertices of degree k that are not adjacent, then by (2.16)

(along with (2.17) and (2.19)), u and v have

|Nu ∩Nv| =
n+ 1

4

common neighbours. Thus, using N = n − 2, the induced subgraph of G on vertices

{v3, . . . , vn} must be strongly regular with parameters(
N,

N − 1

2
,
N − 5

4
,
N − 1

4

)
,

and hence, is a conference graph. Therefore, there is a conference graph H such that

G = {v2} ∨ (H ∪ {v1}).

We now show that the graphs listed in (i) and (ii) have three distinct L-eigenvalues. If

G is a star then G has three distinct eigenvalues of 0, 1 and 2, as mentioned in Example

1.6.2.

Suppose H is a conference graph on n − 2 vertices and let G = {u} ∨ (H ∪ {v}) with

degree matrix D. Note that L has exactly three distinct eigenvalues if and only if D−1A

has exactly three distinct eigenvalues, since D−1A and I −L are similar. We will show that

D−1A has exactly three distinct eigenvalues by constructing a set of n linearly independent

eigenvectors. As H is a conference graph it has parameters(
n− 2,

n− 3

2
,
n− 7

4
,
n− 3

4

)
,
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and so is regular of degree n−3
2

. If H has one vertex then G is a star graph on 3 vertices.

Thus, assume n − 2 > 1 and so H is connected. The eigenvalues of the adjacency matrix

of a strongly regular graph are well known (see [27]). Let Â be the adjacency matrix of H

with eigenvalues n−3
2

, θ1 and θ2, where

θ1 =
−1 +

√
n− 2

2
, and θ2 =

−1−
√
n− 2

2
.

We have that 1n−2 is an eigenvector of Â with eigenvalue n−3
2

, and 1n is an eigenvector of

D−1A with eigenvalue 1. Let {z1, . . . , zn−3} be the remaining eigenvectors of Â such that

zi ⊥ 1n−2. Note that

D−1A =


0 1 0Tn−2

1
n−1

0 1
n−1

1Tn−2

0n−2
2

n−1
1n−2

2
n−1

Â

 .
Then

D−1A


0

0

zi

 =
2θ

n− 1


0

0

zi

 ,
where θ is either θ1 or θ2. One can check that

a

b1

1n−2

 ,

−a
−b2

1n−2

 ,
are eigenvectors for D−1A corresponding to eigenvalues 2θ2

n−1
and 2θ1

n−1
respectively, where

a =
(n− 1)

√
n− 2

2
, b1 =

2aθ2

n− 1
, and b2 =

2aθ1

n− 1
.

Thus, we have a set of n linearly independent eigenvectors for D−1A with the three distinct

eigenvalues {
1,

2θ1

n− 1
,

2θ2

n− 1

}
.

Theorem 2.6.6 (ii) provides classes of graphs that have exactly three distinct L-eigenvalues

and three distinct vertex degrees, for example, see Figure 2.4 where H is taken to be a cycle

on five vertices. We next provide some classes of graphs that have exactly three distinct

L-eigenvalues and two distinct vertex degrees.
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Example 2.6.7 Fix s,m ≥ 2 and let G be the generalized petal graph G = {u} ∨ (sKm),

which is a generalization of the petal graph due to E. Wilmer (see [12, Example 1.12]). See

Figure 2.5 for an illustration.

Km

Km

...

...

...

Figure 2.5: The generalized petal graph.

The L-eigenvalues of G are{
0(1),

(
1

m

)(s−1)

,

(
m+ 1

m

)(s(m−1)+1)
}
.

One simple way to prove this is to look at the block matrix

B = m(I − L) + I =



1 1√
s
1Tm · · · · · · 1√

s
1Tm

1√
s
1m Jm 0m · · · 0m
... 0m

. . . . . .
...

...
...

. . . . . . 0m
1√
s
1m 0m · · · 0m Jm


.

Take a set of vectors {1m, v1, . . . , vm−1} each of length m that form an orthonormal basis for

Rm. Then a set of linearly independent eigenvectors for B is


√
s

1m
...

1m

 ,

−m
√
s

1m
...

1m

 ,



0

1m

−1m

0m
...

0m


, . . . ,



0

1m

0m
...

0m

−1m


,
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with corresponding eigenvalues m+ 1, 0, m, . . . ,m, along with the s(m− 1) vectors

0

v1

0m
...

0m


, . . . ,



0

0m
...

0m

v1


, . . . , . . . , . . . ,



0

vm−1

0m
...

0m


, . . . ,



0

0m
...

0m

vm−1


,

each with eigenvalue 0 for B. Then B has eigenvalues (m + 1)(1), 0(s(m−1)+1) and m(s−1),

from which the eigenvalues of L can be derived.

Example 2.6.8 Let G be the graph constructed as follows. Fix m ≥ 1. Take the vertex set

to be {u1, u2, u3, V1, V2, V3} where each Vi is a set of m vertices, so that the graph has a total

of 3(m+ 1) vertices. Let G have the edge set

{u1x : x ∈ V1 ∪ V2} ∪ {u2x : x ∈ V1 ∪ V3} ∪ {u3x : x ∈ V2 ∪ V3}∪

{u1u2, u2u3, u1u3} ∪
3⋃
i=1

{xy : x, y ∈ Vi, x 6= y}.

See Figure 2.6 for an illustration.

Km Km

Km

...

...

...

...

......

Figure 2.6: A graph with exactly three distinct L-eigenvalues and two distinct vertex
degrees.

Then G has L-eigenvalues{
0(1),

(
3

2(m+ 1)

)(2)

,

(
m+ 2

m+ 1

)(3m)
}
.
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To show this, consider the block matrix

B = (m+ 1)

(
I − L+

1

m+ 1
I

)

=



1 1
2

1
2

1√
2
1Tm

1√
2
1Tm 0Tm

1
2

1 1
2

1√
2
1Tm 0Tm

1√
2
1Tm

1
2

1
2

1 0Tm
1√
2
1Tm

1√
2
1Tm

1√
2
1m

1√
2
1m 0m Jm 0m 0m

1√
2
1m 0m

1√
2
1m 0m Jm 0m

0m
1√
2
1m

1√
2
1m 0m 0m Jm


.

We know 0 is an eigenvalue of L. We find a set of 3m+ 2 linearly independent eigenvectors

for B with the remaining eigenvalues. Take a set of vectors {1, v1, . . . , vm−1} each of length

m that form an orthonormal basis for Rm. Then the 3(m− 1) vectors

0

0

0

v1

0m

0m


,



0

0

0

0m

v1

0m


,



0

0

0

0m

0m

v1


, . . . , . . . , . . .



0

0

0

vm−1

0m

0m


,



0

0

0

0m

vm−1

0m


,



0

0

0

0m

0m

vm−1


,

are eigenvectors of B each with eigenvalue 0. The two vectors

0

1

−1
√

2 1m

−
√

2 1m

0m


,



−2

1

1
√

2 1m

−
√

2 1m

−2
√

2 1m


,

are eigenvectors of B each with eigenvalue (2m+ 1)/2, and the vectors

−1

−1

1
√

2
m

1m

0m

0m


,



−1

1

−1

0m
√

2
m

1m

0m


,



1

−1

−1

0m

0m
√

2
m

1m


,
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are eigenvectors of B each with eigenvalue 0. It is easy to see that these 3m + 2 vectors

(along with the scaled and translated null vector for L) are linearly independent.

Let G be a connected graph of order n with m edges. Suppose G has exactly three

distinct L-eigenvalues 0 < µ1 < µ2 and two distinct vertex degrees dA and dB. Partition the

vertex set as A ∪ B so that vertices in A have degree dA and vertices in B have degree dB.

Then (2.14) implies that for every x ∈ A, we have

e(x,B) =
e(A,B)

|A|
,

and for every x ∈ B, we have

e(x,A) =
e(A,B)

|B|
.

Thus, the edges between A and B form a semiregular bipartite graph. The graphs in Ex-

amples 2.6.7 and 2.6.8 are cases where exactly two vertex degrees occur and thus satisfy the

above condition. By Remark 2.4.6, we have

µ2 = e(A,B)

(
1

|A|dA
+

1

|B|dB

)
.

Then,

µ1 =
(µ2 − 1)|A||B|

e(A,B)
.

Note that we can rewrite µ2 as

µ2 =
2m · e(A,B)

|A||B|dAdB
.

It would be interesting to know what this implies about the structure of G. Since the edges

between A and B form a semiregular bipartite graph, we know that the induced subgraph

of G on A and the induced subgraph of G on B both need to be regular, however, must they

be strongly regular, empty, or complete?

For graphs of orders 3 ≤ n ≤ 10, Matlab was used to find all connected graphs of order

n with exactly three distinct L-eigenvalues by using a database of nonisomorphic connected

graphs (in particular, [48]). The graphs found are complete bipartite graphs, strongly regular

graphs, graphs from the families listed in Examples 2.6.7, 2.6.8 and Theorem 2.6.6, along

with an additional graph that does not fall under one of these families (see Figure 2.7).

For n = 3, there is one graph: K1,2.

For n = 4, there are two graphs: K1,3 and K2,2.
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Figure 2.7: A graph on 10 vertices with exactly three distinct L-eigenvalues.

For n = 5, there are four graphs: K1,4, K2,3, C5 and {u} ∨ (2K2).

For n = 6, there are five graphs: K1,5, K2,4, K3,3, K2,2,2 and the graph in Example 2.6.8

with m = 1.

For n = 7, there are six graphs: K1,6, K2,5, K3,4, {u} ∨ (3K2), {u} ∨ (2K3), and {u} ∨
(C5 ∪ {v}).

For n = 8, there are five graphs: K1,7, K2,6, K3,5, K4,4 and K2,2,2,2.

For n = 9, there are nine graphs: K1,8, K2,7, K3,6, K4,5, {u}∨ (4K2), {u}∨ (2K4), K3,3,3,

the generalized quadrangle GQ(2, 1) (which is a strongly regular graph, see [27]), and the

graph in Example 2.6.8 with m = 2.

For n = 10, there are ten graphs: K1,9, K2,8, K3,7, K4,6, K5,5, K2,2,2,2,2, the Petersen

graph, {u} ∨ (3K3), the 5-triangular graph (which is a strongly regular graph, see [27]), and

the graph in Figure 2.7. Note that the graph in Figure 2.7 has K2,2,2 (which is strongly

regular) as an induced subgraph of the vertices on the right side part.

Finally, we remark that not all graphs with constant µ and µ̄ have exactly three distinct

L-eigenvalues, though they have exactly three distinct L-eigenvalues (see Theorem 2.6.1).

For example, consider the graph G formed by removing a single edge from K4. Then G has

constant µ = 2 and µ̄ = 0, thus, has exactly three distinct L-eigenvalues. However, G has

four distinct L-eigenvalues.
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2.7 Relationship to the general Randić index R−1(G)

We begin with two other formulations of R−1(G). By analyzing the entries in (I − L)2

and using (1.5), observe that

tr((I − L)2) = 2
∑
x∼y

1

dxdy
= 2R−1(G).

Hence,

R−1(G) =
tr((I − L)2)

2
. (2.21)

Also, observe that using (2.21) and the fact that tr(L) = n we can derive

R−1(G) =
1

2
1TD−1AD−11. (2.22)

In the next lemma we see the importance of R−1(G) when analyzing the L-energy of a graph.

Lemma 2.7.1 Let G be a graph of order n with no isolated vertices. Then

2R−1(G) ≤ EL(G) ≤
√

2nR−1(G).

Proof. As mentioned in Section 1.8, by the Cauchy-Schwarz inequality with (1.2) (using

vectors (1, . . . , 1)T and (|λ1(I−L)|, . . . , |λn(I−L)|)T ) along with (2.21) we obtain the upper

bound

EL(G) ≤

√√√√n
n∑
i=1

[λi(I − L)]2 =
√
n · tr((I − L)2) =

√
2nR−1(G).

Note that the eigenvalues of I−L lie in the interval [−1, 1]. Thus, [λi(I−L)]2 ≤ |λi(I−L)|,
giving,

EL(G) =
n∑
i=1

|λi(I − L)| ≥
n∑
i=1

[λi(I − L)]2 = tr((I − L)2) = 2R−1(G).

Thus, determining how the structure of a graph relates to R−1(G) will provide information

about EL(G). It should be noted that R−1(G) comes up in other ways when analyzing the

eigenvalues of L. In [10], Butler provides a bound on the gap between the nontrivial largest

and smallest eigenvalues of L in terms of formulation (2.22) of R−1(G). We restate this

result using R−1(G).
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Lemma 2.7.2 [10, Corollary 9] Let G be a connected graph of order n with normalized

Laplacian matrix L. Then√
λn(L)

λ2(L)
+

√
λ2(L)

λn(L)
≥ 2

√(
1− 1

n

)(
1 +

2

n
R−1(G)

)
.

and

λn(L)− λ2(L) ≥ 2

n− 1

√
2(n− 1)R−1(G)− n.

In [12, Equation 1.9], Chung defines

λ = max
i 6=1
|1− λi(L)|,

which appears when dealing with random walks on graphs. Then (as in [12]) we have

tr(I − L)2 =
n∑
i=1

(1− λi(L))2,

≤ 1 + (n− 1)λ
2
,

and using formulation (2.21) of R−1(G) we can rewrite this as

R−1(G) ≤ 1 + (n− 1)λ
2

2
.

Also, in [67, Lemma 2.33] the notation e−1(G,G) is used which is equal to 2R−1(G). In

[25], the authors bound R−1(G) in terms of n, λn(L) and λ2(L).

Theorem 2.7.3 [25, Theorem 1.1] Let G be a connected graph on n vertices. Then

R−1(G) ≤ 1

2
(n− 1)(n− 2)

(
λn(L)− n

n− 1

)2

+
n

2(n− 1)
,

R−1(G) ≤ 1

2
(n− 1)(n− 2)

(
λ2(L)− n

n− 1

)2

+
n

2(n− 1)
,

with equalities holding if and only if G is the complete graph.

If G is a graph of order n, we will see in the next section that
(
n
2

)
− R−1(G) appears as

a coefficient in the characteristic polynomial of L. Thus, when studying eigenvalues of L,

the general Randić index R−1(G) is an important parameter. In Chapter 3, we will look at

upper and lower bounds on R−1(G) in more detail.
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2.8 Results of Runge

Fritz Runge was a doctoral student of H. Sachs during the 1970’s. His dissertation, which

is in German, deals with contributions to the theory of spectra of graphs and hypergraphs. A

consequence of his results is a “Matrix-Tree Theorem” and a “Coefficients Theorem” for the

normalized Laplacian. Additionally, the general Randić index R−1(G) (indirectly) appeared

in one of his results which led to a (now settled) conjecture relating R−1(G) with the number

of edges of G and the largest A-eigenvalue of G (called the index of a graph). This section is

meant to give credit to Runge and make mention of his contributions regarding the spectrum

of L.

In fact, Runge did not deal directly with L but rather with the matrix Q = D−1A. Since

Q = D−1A = D−1/2(I − L)D1/2,

we see that Q and I − L are similar. Thus, for any graph, Q and I − L have the same

eigenvalues and the same characteristic polynomial. In his dissertation, Runge proves a

number of results about the characteristic polynomial of Q which must also hold for the

characteristic polynomial of I −L. Throughout this section, we rephrase some of the results

of Runge in terms of the spectrum of L. It should be noted that the matrix 1
2
(Q + I) and

its spectrum are important in Correspondence Analysis [59].

One classical combinatorial result is the Matrix-Tree Theorem which states that the

determinant of any cofactor of the combinatorial Laplacian L is equal to the number of

spanning trees in a graph. Hence, the number of spanning trees of a graph G is given by

t(G) =
1

n

n∏
i=2

λi(L).

Runge and Sachs [57, 58] proved a similar result for the spectrum of Q, which we rephrase

for L.

Theorem 2.8.1 [17, Section 1.9 #10] Let G be a graph of order n with degree matrix D.

Then the number of spanning trees of G is given by

t(G) =
detD

volG

n∏
i=2

λi(L).
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Runge and Sachs [57] then generalize this result to obtain an analogous formula for the

number of “total spanning trees” in a hypergraph.

Runge also listed two formulas for the coefficients of the characteristic polynomial of Q.

One in terms of the cycle structure of the graph, and another in terms of the tree structure.

Suppose Q has characteristic polynomial

det(λI −Q) = q0λ
n + q1λ

n−1 + · · ·+ qn−1λ+ qn,

and L has characteristic polynomial

det(λI − L) = c0λ
n + c1λ

n−1 + · · ·+ cn−1λ+ cn,

where c0 = q0 = 1. By the Binomial Theorem, the following relationship holds between the

coefficients of the characteristic polynomial of Q and that of L:

cn−k =
n−k∑
i=0

(−1)n+k

(
n− i
k

)
qi and qn−k =

n−k∑
i=0

(−1)n+k

(
n− i
k

)
ci.

It can easily be determined that q2 = −R−1(G). We also have the following information

about ci:

c1 = −n, c2 =

(
n

2

)
−R−1(G), cn−1 =

(−1)n−1 volG

detD
t(G), cn = 0.

Before we list Runge’s formula for qi in terms of the tree structure, we require some notation.

Let G = (V,E) be a graph of order n. Let J = {j1, j2, . . . , jq} ⊆ V . For J 6= ∅, we let GJ

denote the multigraph obtained from G by identifying the vertices j1, j2, . . . , jq, thereby

replacing the set {j1, j2, . . . , jq} by a single new vertex v. The number of loops on v is equal

to the number of edges in the induced subgraph of G on J , and the number of edges from

v to k, for k ∈ V \J , is equal to the number of j ∈ J such that jk is an edge in G. Thus,

this identification creates a new multigraph GJ that contains both loops and multiple edges.

Note that if |J | = 1, then GJ = G. The notion of spanning trees is easily extended to that

of multigraphs. We let t(GJ) denote the number of spanning trees in the multigraph GJ ,

and we use the convention that t(GV ) = 1. Runge proved the following formula for the

coefficients of the characteristic polynomial of Q.

Theorem 2.8.2 [17, Theorem 1.5] Let G be a graph without isolated vertices and Q =

D−1A, where D is the matrix of degrees. If Q has characteristic polynomial

det(λI −Q) = q0λ
n + q1λ

n−1 + · · ·+ qn−1λ+ qn,
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then for i = 0, 1, . . . , n,

qi = (−1)n−i
n∑

j=n−i

(
j

n− i

)
(−1)j

∑
J⊆V
|J |=j

t(GJ)∏
k∈V \J

dk
,

where the conventions t(G∅) = 0 and
∏

k∈∅ dk = 1 are adopted.

From this, we can deduce the coefficients of the characteristic polynomial of L in terms

of the tree structure of the graph.

Corollary 2.8.3 Let G be a graph without isolated vertices. If L has characteristic polyno-

mial

det(λI − L) = c0λ
n + c1λ

n−1 + · · ·+ cn−1λ+ cn,

then for i = 0, 1, . . . , n,

cn−i = (−1)(n−i)
∑
J⊆V
|J |=i

t(GJ)∏
k∈V \J

dk
,

where the conventions t(G∅) = 0 and
∏

k∈∅ dk = 1 are adopted.

Runge also provided a formula for the coefficients of the characteristic polynomial of Q

in terms of the cycle structure of a graph that can also be interpreted in terms of L. We

omit the formulas here and remark that they can be found in [17, Theorem 1.5a].

In 1996, an analog of the Matrix-Tree Theorem was proved by Chung and Langlands [13]

for a combinatorial Laplacian with vertex weights (for which L is a special case by using

weights 1
dx

). They looked at rooted directed spanning forests rather than a multigraph GJ ,

although these two notions are similar in flavour. Let G = (V,E) be a graph of order n.

Let S denote a subset of vertices with |S| = s and X denote a subset of n− s edges. If the

subgraph with vertex set V and edge set X is a spanning forest and each of the subtrees

contains exactly one vertex in S, we can then define the rooted directed spanning forest XS

which consists of all edges of X oriented toward S. For a rooted directed spanning forest

XS, we define the weight of XS as follows:

ω(XS) =
∏

(x,y)∈E(XS)

1

dy

and

κS(G) =
∑
XS

ω(XS).
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Chung and Langlands [13] proved the following for the coefficients of the characteristic

polynomial of a vertex weighted Laplacian, which we restate for L and cn−i.

Theorem 2.8.4 [13, Theorem 2] Let G = (V,E) be a graph without isolated vertices. If L
has characteristic polynomial

det(λI − L) = c0λ
n + c1λ

n−1 + · · ·+ cn−1λ+ cn,

then for i = 0, 1, . . . , n,

cn−i = (−1)(n−i)
∑
S⊆V
|S|=n−i

κS(G).

As seen in Example 1.6.6, if G is a regular graph of degree r then

L = I − 1

r
A.

Runge also showed that the Q-eigenvalues can be determined from the A-eigenvalues in the

case that G is a regular graph. Additionally, he showed the Q-eigenvalues can be determined

from the A-eigenvalues in the case that G is a semiregular bipartite graph.

Remark 2.8.5 [17, Theorem 1.1] If G is a regular graph of degree r, then for each 1 ≤ i ≤ n,

λi(L) = 1− 1

r
λn−i+1(A).

If G is a semiregular bipartite graph of degrees r1 and r2, then for each 1 ≤ i ≤ n,

λi(L) = 1− 1
√
r1r2

λn−i+1(A).

Finally, we note that Runge (indirectly) dealt with the general Randić index R−1(G).

Let G = (V,E) be a graph of order n with no isolated vertices and m edges. Then Runge

showed
n∑
i=1

λ2
i (Q) = 2

∑
x∼y

1

dxdy
.

A consequence of this is the following, which we restate in terms of R−1(G). Note that if G

is a graph, then we call λn(A) the index of G and denote by ρ.

Corollary 2.8.6 [17, Section 1.9 #8] Let G be a graph of order n with no isolated vertices

and m edges. Suppose G is a regular graph of degree r (resp. semiregular bipartite graph of

degrees r1 and r2). Let ρ be the index of G, that is, ρ = r (resp. ρ =
√
r1r2). Then

m = ρ2R−1(G). (2.23)
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Runge then asked if (2.23) is sufficient for a graph to be either regular or semiregular [17,

Section 1.9 #8]. This was shown to be false by Hofmeister [35] who proposed a modified

conjecture. We first require a definition. Let G be a graph of order n with no isolated

vertices. Then G is called almost regular if there is a nonnegative real number r such that

every component of G is either r-regular or semiregular bipartite with degrees r1 and r2 with

r1r2 = r2. Hofmeister [35] conjectured that the condition in (2.23) is sufficient for a graph to

be almost regular. Later, Hoffman, Hofmeister and Wolfe [34] proved a generalization of this

modified conjecture. Then Simić and Stevanović provided a shorter proof for the theorem

in [62]. We restate the theorem in terms of R−1(G).

Theorem 2.8.7 [34, 62] For any graph G with no isolated vertices, m edges and index ρ,

we have

ρ2 ≥ m

R−1(G)
.

Equality holds if and only if G is almost regular.
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3 THE GENERAL RANDIĆ INDEX

3.1 Introduction

In this chapter, we first highlight some relevant results on the parameter R−1(G) that

have independently appeared in the literature. Many of the results known for R−1(G) are

for trees and chemical graphs, that is, graph representations of chemical compounds. See

[17, Chapter 8] for more details on relating chemistry to graph theory. Here, we extend an

upper bound on R−1(G) known to be true for trees to connected graphs. We also discuss

how R−1(G) can change when an edge is deleted from G.

3.2 Upper and lower bounds on R−1(G)

We first provide a few bounds on R−1(G) in terms of other graph parameters. By con-

sidering the minimum and maximum degrees of G, we obtain upper and lower bounds on

R−1(G).

Theorem 3.2.1 Let G be a graph of order n with no isolated vertices. Suppose G has

minimum vertex degree equal to dmin and maximum vertex degree equal to dmax. Then

n

2dmax

≤ R−1(G) ≤ n

2dmin

.

Equality occurs in both bounds if and only if G is a regular graph.

Proof. By (1.7) we have,

R−1(G) ≤ 1

2

∑
y∈V

1

dy

∑
x
x∼y

1

dmin

,

=
1

2

∑
y∈V

1

dy

dy
dmin

,

=
n

2dmin

.
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Similarly,

R−1(G) ≥ 1

2

∑
y∈V

1

dy

∑
x
x∼y

1

dmax

,

=
n

2dmax

.

It is easy to see that equality occurs in both bounds if and only if G is a regular graph.

It should be noted that in [61, Theorem 2.2 & 2.3] an analogous result to Theorem 3.2.1

on Rα(G) was presented independently by Shi when taking α = −1.

The next result provides bounds on R−1(G) strictly in terms of the order of G. Recall

that the length of a path is the number of edges that the path uses. It should be noted

that an analogous result to the next Theorem was stated independently by Li and Yang [43,

Theorem 3.2].

Theorem 3.2.2 Let G be a graph of order n with no isolated vertices. Then

n

2(n− 1)
≤ R−1(G) ≤

⌊n
2

⌋
,

with equality in the lower bound if and only if G is a complete graph, and equality in the

upper bound if and only if either

(i) n is even and G is the disjoint union of n/2 paths of length 1, or

(ii) n is odd and G is the disjoint union of (n − 3)/2 paths of length 1 and one path of

length 2.

Proof. The lower bound follows from Theorem 3.2.1 as dmax ≤ n− 1, and equality occurs if

and only if G is regular of degree n− 1, hence, complete.

If n is even, then the upper bound follows from Theorem 3.2.1 as dmin ≥ 1, and equality

occurs if and only if G is regular of degree 1, hence, G is the disjoint union of n/2 paths of

length 1.

If n is odd, then we will show that R−1(G) ≤ n−1
2
. Since G has no isolated vertices, there

is a vertex x with degree at least dx ≥ 2. Suppose that x is adjacent to {y1, y2, . . . , ydx}. By
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(1.7) we have,

R−1(G) ≤ n− (dx + 1)

2
+

1

2dx

dx∑
i=1

1

dyi

+
1

2

dx∑
i=1

1

dyi

 1

dx
+
∑
u6=x
u∼yi

1

dmin

 ,

≤ n− 1

2
+

(
1

dx
− 1

2

)( dx∑
i=1

1

dyi

)
,

≤ n− 1

2
.

It is easy to see that equality occurs if and only if there is one vertex of degree 2 and the

other n−1 vertices have degree 1, that is, G is the disjoint union of (n−3)/2 paths of length

1 and one path of length 2.

If G is a disconnected graph with k connected components, in particular,

G1, . . . , Gk,

then

R−1(G) =
k∑
i=1

R−1(Gi).

Thus, it is interesting to know how R−1(G) behaves for the class of connected graphs.

3.3 Bounds on R−1(G) over the class of connected graphs

One upper bound on R−1(G) when G is a connected graph comes from [45].

Lemma 3.3.1 [45, Corollary 2] If G is a connected graph of order n, then

R−1(G) ≤ 1

2

n∑
i=1

1

di
.

Equality occurs if and only if G is regular.

In [14], Clark and Moon provide bounds on R−1(T ), for a tree T of order n. They showed

that

1 ≤ R−1(T ) ≤ 5n+ 8

18
.

Clark and Moon [14] then proposed two problems:
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1. Find K = limn→∞
f(n)
n

, where f(n) is the maximum value of R−1(T ) among all trees

T of order n.

2. Refine the upper bound for R−1(T ) so that it is sharp for infinitely many values of n.

Hu, Li and Yuan [38] gave a first solution to both problems, however, gaps were found

in their proof (see [51]). Then Pavlović, Stojanović and Li gave a sound proof in [52].

Theorem 3.3.2 [38, 52] For a tree T of order n ≥ 103,

R−1(T ) ≤ 15n− 1

56
.

A class of trees is provided in [14] that satisfies equality in Theorem 3.3.2 for infinitely

many values of n. Theorem 3.3.2 together with the result in [14] implies that K = 15
56

in

the first problem posed by Clark and Moon. See [53] for a further refinement giving a sharp

upper bound for R−1(T ) amongst all trees T of order n, for n ≥ 720. Also, see [41, 42]

for many other results concerning bounds for R−1(T ). In what follows, we will see that the

bound R−1(G) ≤ 15(n+1)
56

holds for any connected graph G of order n ≥ 3. This bound is not

sharp for all n, and we suspect that a refined bound similar to that in [53] can be achieved

with extra consideration.

We first provide some notation to help structure G. We say G has a suspended path from

u to w, if uvw is a path with dGu = 1 and dGv = 2. Note that we don’t require dGw ≥ 3 as in

[14].

A (t, s + t)-system centered at r is an induced subgraph of G, such that there are t

suspended paths to vertex r and dGr = s+ t. This is illustrated in Figure 3.1.
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Figure 3.1: A (t, s+ t)-system centered at r.

A (k, t, s+k)-system centered at R is an induced subgraph of G that has k vertex disjoint

(t, t+ 1)-systems centered at r1, r2, . . . , rk, such that R is adjacent to each ri and dGR = s+k.

This is illustrated in Figure 3.2.
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Figure 3.2: A (k, t, s+ k)-system centered at R.

The set of all (t, s+ t)-systems of G, for s ≥ 0 and t ≥ 1, and (k, t, s+ k)-systems of G,

for s ≥ 0 and k, t ≥ 1, is referred to as the collection of systems of G. Any object in this

collection is referred to as a system of G. Note that a vertex z of G may be the center of

many different systems.

One question to ask is if there is always a tree on n vertices that maximizes R−1(G)

over all connected graphs of order n. If the answer is yes, then the bound for connected

graphs would follow immediately. A first approach would be to look at the spanning trees

of G and see if R−1(G) ≤ R−1(T ) for some spanning tree T of G. However, it is interesting

to note that there exist graphs G such that for every spanning tree T of G, the inequality

R−1(T ) < R−1(G) holds.

Example 3.3.3 Let G be the graph described as follows: Let t > 16 be a natural number

and consider a cycle with 3 vertices a1, a2, a3 each with degree 4 and with each of a1, a2, a3

being the center of a (2, t, 4)-system. The order of G is 12t + 9 and the only spanning trees

of G are obtained by removing an edge on the cycle (namely, a1a2, a2a3 or a1a3). If T is
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any spanning tree of G then,

R−1(G)−R−1(T ) =

(
1

t
+

3

16

)
−
(

4

3t
+

1

6

)
=
t− 16

48t
.

Thus, for t > 16, we have that for every spanning tree T of G, R−1(T ) < R−1(G).

To prove that R−1(G) ≤ 15(n+1)
56

for connected graphs G of order n ≥ 3, we take the

same approach as done in the tree case. An inductive argument will be used. We begin with

an inequality relating R−1(G) to R−1(G\S). Note that deleting vertices (and edges) of G

changes the degree sequence, and so the weighted graph associated with G\S will not be an

induced weighted subgraph of the weighted graph associated with G.

Observation 3.3.4 Let S be a subset of vertices of G, then,

R−1(G) ≤ R−1(G\S) +
∑
x∼y

x∈S,y 6∈S

1

dGx d
G
y

+
∑
x∼y
x,y∈S

1

dGx d
G
y

.

In [38], to prove the upper bound on R−1(T ), the edge weights of T were summed up

at the end of the proof. In general, for connected graphs it is more beneficial to use the

formulation (1.7) of R−1(G) and sum up the vertex weights (as seen in the final case of the

proof below). Some of the cases in [38, 52, 53] can be extended to general graphs, but for

completeness we provide the full proof in the general case. Note that in Cases (0)-(iii) we

use 1/4 instead of 15/56 in our manipulations of the second term. We now turn to our main

result which in turn provides information about the L-energy of connected graphs.

Theorem 3.3.5 Let G be a connected graph on n ≥ 3 vertices. Then

R−1(G) ≤ 15(n+ 1)

56
.

Proof. The proof is by induction on the number of vertices. If n = 3, then the path of length

2 and the triangle both satisfy the inequality. Let G be a connected graph on n ≥ 4 vertices,

and assume that the inequality holds for connected graphs on fewer than n vertices.

Case (0): If G has minimum degree at least 2 then by Theorem 3.2.1, we have R−1(G) ≤
n/4, and so the inequality holds.

Case (i): Let x be a vertex of degree 1 that is adjacent to a vertex y with dy ≥ 4.

Deleting the vertex x does not disconnect the graph, thus, using S = {x} in Observation
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3.3.4 along with induction, we have

R−1(G) ≤ R−1(G\{x}) +
1

dy
,

≤ 15

56
n+

1

4
,

<
15

56
(n+ 1).

Case (ii): Let z be a vertex of degree 2 such that z ∼ x, z ∼ y, dx ≤ dy.

(a) Suppose x 6∼ y in G and either dx = 1, dy ≤ 2, or dy ≥ dx ≥ 2. Then form a graph H

by deleting z and adding the edge xy. Note that dHx = dx and dHy = dy. Thus,

R−1(G) = R−1(H) +
1

2dx
+

1

2dy
− 1

dxdy
.

Since H has n− 1 vertices and is connected, we have by induction that

R−1(G) ≤ 15

56
n+

dx + dy − 2

2dxdy
,

<
15

56
(n+ 1) +

2dx + 2dy − dxdy − 4

4dxdy
,

=
15

56
(n+ 1) +

(dx − 2)(2− dy)
4dxdy

.

If dx = 1, dy ≤ 2 or dy ≥ dx ≥ 2, then R−1(G) < 15
56

(n+ 1).

(b) Suppose x ∼ y in G (and hence dy ≥ dx ≥ 2), then

R−1(G) ≤ R−1(G\{z}) +
1

2dx
+

1

2dy
+

1

dxdy
− 1

(dx − 1)(dy − 1)
.

Since deleting z does not disconnect the graph, we have by induction that

R−1(G) <
15

56
(n+ 1)− f(dx, dy)

4dxdy(dx − 1)(dy − 1)
,

where

f(x, y) = (x− 1)(x− 2)y2 − (3x+ 1)(x− 2)y + 2(x+ 2)(x− 1).

Our goal is to show that f(x, y) ≥ 0, for y ≥ x ≥ 2 (with x, y integral). Note that f(2, y) = 8,

for all y. Fix x = x0 ≥ 3 and view f as a parabola in y opening upward. The vertex of the

parabola occurs with horizontal coordinate 3
2
+ 2

x0−1
≤ 2.5. As f(x0, 3) = 2x2

0−10x0+20 ≥ 0,

for x0 ≥ 3, we have that f(x0, y) ≥ 0, for y ≥ 3. Thus, R−1(G) < 15
56

(n+ 1).
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Case (iii): Assume we have vertices u, v, x, y with du = 1, dv = 3, u ∼ v, v ∼ y, v ∼ x

and dx ≤ dy.

(a) If dx = 1 and dy ≥ 5, then let H denote the graph obtained from G by deleting

vertices x, v, and u. Note that H is a connected graph with n − 3 ≥ 3 vertices. Thus,

induction gives

R−1(G) ≤ 15

56
(n− 2) +

1

3
+

1

3
+

1

15
<

15

56
(n− 2) +

3

4
<

15

56
(n+ 1).

(b) Suppose x 6∼ y. If either: dx = 1, dy ≤ 4, or dy ≥ dx ≥ 2, then form a new graph

H obtained from G by deleting u and v and adding the edge xy. Notice that dHx = dx and

dHy = dy. Then

R−1(G) = R−1(H) +
1

3
+

1

3dx
+

1

3dy
− 1

dxdy
.

If dx = dy = 1, then G is a star on 4 vertices and the inequality holds. Otherwise, H is a

connected graph with n− 2 ≥ 3 vertices, and by induction we have

R−1(G) ≤ 15

56
(n− 1) +

1

3
+

1

3dx
+

1

3dy
− 1

dxdy
,

<
15

56
(n+ 1) +

2dx + 2dy − dxdy − 6

6dxdy
,

=
15

56
(n+ 1) +

(2− dx)dy + 2(dx − 3)

6dxdy
.

If dx = 1, dy ≤ 4, then the numerator of the second term is nonpositive. If dx = 2 or dx = 3,

then the the numerator of the second term is negative. If dy ≥ dx ≥ 4, then

(2− dx)dy + 2(dx − 3) ≤ −2dy + 2(dy − 3) < 0.

Hence, R−1(G) < 15
56

(n+ 1) holds.

(c) Suppose x ∼ y and dy ≥ dx ≥ 2. Form a graph H by deleting u and v. Note that

dHx = dx − 1 and dHy = dy − 1. Keeping track of the weight of edge xy in G and H gives

R−1(G) < R−1(H) +
1

3
+

1

3dx
+

1

3dy
+

1

dxdy
− 1

(dx − 1)(dy − 1)
.

Deleting u and v and using induction gives

R−1(G) <
15

56
(n+ 1)− f(dx, dy)

6dxdy(dx − 1)(dy − 1)
,

where

f(x, y) = (x− 1)(x− 2)y2 − (3x2 − 5x− 4)y + 2(x− 1)(x+ 3).
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Our goal is to show that f(x, y) ≥ 0, for y ≥ x ≥ 2 (with x, y integral). Note that

f(2, y) ≥ 0, for y ≥ 2. Fix x = x0 ≥ 3 and view f as a parabola in y opening upward.

The vertex occurs with horizontal coordinate 3
2

+ 4x0−10
2(x0−1)(x0−2)

≤ 2, for x0 = 2 and x0 ≥ 3.

As f(x0, 3) = 2x2
0 − 8x0 + 24 ≥ 0 for x0 ≥ 3, we have that f(x0, y) ≥ 0, for y ≥ 3. Thus,

R−1(G) < 15
56

(n+ 1).

Case (iv): Let t ≥ 1 and suppose there is a (t, s+ t)-system of G with s+ t ≥ 14. Label

the vertices as in Figure 3.1. Then deleting x1 and y1, and using induction gives,

R−1(G) ≤ 15

56
(n− 1) +

1

2
+

1

2dr
,

≤ 15

56
(n+ 1)− 30

56
+

1

2
+

1

28
,

=
15

56
(n+ 1).

Case (v): Suppose there is a (t, s + t)-system of G with s ≥ 0 and t ≥ 4. Label the

vertices as in Figure 3.1. This system has a subgraph that is a (4, 4)-system (that includes

the vertices x1 and y1). By keeping track of the edge weight changes in the (4, 4)-system

subgraph and deleting x1 and y1, we obtain

R−1(G) ≤ 15

56
(n− 1) +

(
2 +

4

2dr

)
−
(

3

2
+

3

2(dr − 1)

)
,

=
15

56
(n+ 1)− (dr − 7)(dr − 8)

28dr(dr − 1)
,

≤ 15

56
(n+ 1),

since dr is an integer.

Case (vi): Suppose there is a (k, 3, s+ k)-system with s+ k ≤ 14 and k ≥ 1. Label the

vertices as in Figure 3.2. This system has a subgraph that is a (1, 3, 1)-system with center

R (that includes the vertices x1
1 and y1

1). By keeping track of the edge weight changes in the

(1, 3, 1)-system and deleting x1
1 and y1

1, we obtain

R−1(G) ≤ 15

56
(n− 1) +

(
3

2
+

3

8
+

1

4dR

)
−
(

1 +
1

3
+

1

3dR

)
,

=
15

56
(n+ 1) +

dR − 14

168dR
,

≤ 15

56
(n+ 1),

since dR = s+ k ≤ 14.
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Case (vii): Suppose there is a (k, 2, k+ 1)-system of G, for some fixed k ≥ 2. Label the

vertices as in Figure 3.2. Let u 6= rj, 1 ≤ j ≤ k, be a vertex adjacent to R. Form a new

graph H obtained from G by deleting the vertices of each (2, 3)-system with center rj, for

j ≥ 2, deleting R, and adding the edge ur1. Note that the degree of u and r1 are the same

in both G and H. Then,

R−1(G)−R−1(H) =
4(k − 1)

3
+

k − 1

3(k + 1)
+

1

3(k + 1)
+

1

du(k + 1)
− 1

3du
.

As we deleted 5(k − 1) + 1 vertices to form H, we have by induction,

R−1(G) ≤ 15

56
(n+ 1)− du(k

2 − 11k + 44) + 56(k − 2)

168du(k + 1)
,

<
15

56
(n+ 1),

since k2 − 11k + 44 > 0 and k ≥ 2.

Case (viii): Let k ≥ 1 and t ∈ [1, 3].

(a) Suppose there is a (k, 2, k + t+ 1)-system of G with center R such that R is also the

center of a (t, k+ t+ 1)-system (note dR = k+ t+ 1). Let u be the vertex adjacent to R that

is not a vertex of one of the systems with center R. Create a new graph H by deleting the

vertex R and the vertices of all the systems with center R, and adding a (1, 2, du)-system

with center vertex u. A total of 5(k− 1) + 2t+ 1 vertices have been deleted. Thus, we have

by induction,

R−1(G) ≤ 15

56
(n+ 1)− (5k + 2t− 4)

15

56
+

4k

3
+

k

3(k + t+ 1)
+

t

2
+

t

2(k + t+ 1)
+

1

du(k + t+ 1)
− 4

3
− 1

3du
,

=
15

56
(n+ 1)− (k2 − 11k + 44 + 6t2 + 7kt− 34t)du + 56(k + t− 2)

168du(k + t+ 1)
,

<
15

56
(n+ 1),

for t ∈ [1, 3] and k ≥ 1.

(b) Suppose G has a (k, 2, k + t)-system with center R such that R is also the center of

a (t, k + t)-system (note dR = k + t). Then n = 5k + 2t + 1 and every vertex of G belongs
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to either the (k, 2, k + t)-system or the (t, k + t)-system. Then,

R−1(G) =
4k

3
+

k

3(k + t)
+
t

2
+

t

2(k + t)
,

=
15(n+ 1)

56
− k2 + 7kt+ 34k + 6t2 + 6t

168(k + t)
,

<
15(n+ 1)

56
.

Final Case: By Cases (i)-(iii), we may assume that every vertex of degree 1 in G is

adjacent to a vertex of degree 2, and further, every vertex of degree 2 in G is adjacent to

both a vertex of degree 1 and a vertex of degree at least 3. Thus, every vertex with degree

1 or 2 is contained in a system of G.

Note that if G is a (t, t)-system then n = 2t + 1 and R−1(G) < 15(n+1)
56

. Thus, any

(t, s+ t)-system of G (with s 6= 1) must have s ≥ 2, s+ t ≤ 13 and t ≤ 3, by Cases (iv) and

(v). Any (t, s+ t)-system with s = 1 belongs to a (k, t, d)-system of G.

Any (k, t, s+ k)-system of G must have 2 ≤ t ≤ 3 by Cases (ii) and (v):

• t = 3: For (k, 3, d)-systems, we must have d ≥ 15, by Case (vi). Note that if d = k,

then the graph is a (k, 3, k)-system which has R−1(G) ≤ 15(n+1)
56

.

• t = 2: Note that if the graph is a (k, 2, k)-system then R−1(G) < 15
56

(n + 1). If G

has a (1, 2, 2)-system, then the center of this system has degree 2 forcing G to be a

(3, 3)-system (which has R−1(G) < 15
56

(n+ 1)). Thus, for (k, 2, s+ k)-systems, by Case

(vii) we must have s ≥ 2.

Thus, in G, the center vertex of a (k, 2, d)-system and (k′, 3, d)-system may coincide, as

with the center vertex of a (k, 2, d)-system and a (t, d)-system (but not a (k, 3, d)-system and

(t, d)-system).

We can partition the vertices of the graph G so as to separate the systems. By Case (0),

G has at least one system.

• Let A1 be the collection of centers of (1, d)-systems with 3 ≤ d ≤ 13 that do not share

a center with any (2, d)-system or (k, t, d)-system.

• Let A2 be the collection of centers of (2, d)-systems with 4 ≤ d ≤ 13 that do not share

a center with any (3, d)-system or (k, t, d)-system.
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• Let A3 be the collection of centers of (3, d)-systems with 5 ≤ d ≤ 13 that do not share

a center with any (k, t, d)-system.

• For k ≥ 1, let Bk be the collection of centers of (k, 2, d)-systems with d ≥ k+2 that do

not share a center with any (k + 1, 2, d)-system, (k′, 3, d)-system or any (i, d)-system,

for k′, i ≥ 1.

• For k ≥ 1, let Ck be the collection of centers of (k, 3, d)-systems with d ≥ k + 1 that

do not share a center with any (k + 1, 3, d)-system or (k′, 2, d)-system, for k′ ≥ 1.

• For k1, k2 ≥ 1, let Dk1,k2 be the collection of centers R, such that both a (k1, 2, d)-system

and a (k2, 3, d)-system have center R, but R is not the center of a (k1 + 1, 2, d)-system

or a (k2 + 1, 3, d)-system.

• For i ∈ [1, 3] and k ∈ [1, 13 − i], let Ei
k be the collection of centers R such that

both a (k, 2, d)-system and (i, d)-system have center R, but R is not the center of a

(k + 1, 2, d)-system or a (i+ 1, d)-system.

The above sets provide a partition of G into its systems. If z is the center of a system of

G, then either z appears in exactly one set described above, or z is the center of a (t, t+ 1)-

system that belongs to a (k, t, d)-system (whose center belongs to exactly one set described

above). Let Q be the vertices of G that are have degree at least 3 and are not the center of

a system of G. Then,

n = |Q|+ 3|A1|+ 5|A2|+ 7|A3|+
∑
k≥1

(5k + 1)|Bk|+
∑
k≥1

(7k + 1)|Ck|+

∑
k1≥1

∑
k2≥1

(5k1 + 7k2 + 1)|Dk1,k2|+
12∑
k=1

(5k + 3)|E1
k |+

11∑
k=1

(5k + 5)|E2
k |+

10∑
k=1

(5k + 7)|E3
k |.

By using (1.7), we will count the weight on each vertex of G. If S is a subset of vertices

of G, we write w(S) to denote the sum of the weights of the vertices in S.

Let y ∈ Q. Then y cannot be adjacent to degree 1 or 2 vertices, thus,

w(y) ≤ 1

2dy

∑
x
x∼y

1

3
=

1

6
<

15

56
.

Let y ∈ A1 and Sy be the set of vertices of the (1, dy)-system with center y. As dy ≥ 3,

counting the weight on the degree 1 vertex, degree 2 vertex, and y respectively, gives

w(Sy)

3
≤ 1

3

[
1

4
+

1

4

(
1

dy
+ 1

)
+

1

2dy

(
1

2
+
dy − 1

3

)]
=

2dy + 1

9dy
<

15

56
.
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Let y ∈ A2 and Sy be the set of vertices of the (2, dy)-system with center y. As dy ≥ 4,

w(Sy)

5
≤ 1

5

[
2

(
1

4
+

1

4

(
1

dy
+ 1

))
+

1

2dy

(
1 +

dy − 2

3

)]
=

7dy + 4

30dy
<

15

56
.

Let y ∈ A3 and Sy be the set of vertices of the (3, dy)-system with center y. As dy ≥ 5,

w(Sy)

7
≤ 1

7

[
3

(
1

4
+

1

4

(
1

dy
+ 1

))
+

1

2dy

(
3

2
+
dy − 3

3

)]
=

5dy + 3

21dy
<

15

56
.

Let y ∈ Bk and Sy be the set of vertices of the (k, 2, dy)-system with center y. Then

w(Sy)

5k + 1
≤ 1

5k + 1

[
k

(
7

6
+

1

6

(
1 +

1

dy

))
+

1

2dy

(
k

3
+
dy − k

3

)]
.

By subtracting 15
56

from both sides, the right hand side factors as

w(Sy)

5k + 1
− 15

56
≤ 28k − 17dy − kdy

168(5k + 1)dy
.

As dy ≥ k + 2, we have that 28k − 17dy − kdy ≤ −(k2 − 9k + 34). When k = 4 or k = 5 we

have k2 − 9k + 34 = 14. Hence, w(Sy)

5k+1
< 15

56
.

Let y ∈ Ck and Sy be the set of vertices of the (k, 3, dy)-system with center y. Then,

w(Sy)

7k + 1
≤ 1

7k + 1

[
k

(
27

16
+

1

8

(
3

2
+

1

dy

))
+

1

2dy

(
k

4
+
dy − k

3

)]
.

By subtracting 15
56

from both sides, the right hand side factors as

w(Sy)

7k + 1
− 15

56
≤ 14k − 17dy

168(7k + 1)dy
.

As dy ≥ k, we have that w(Sy)

7k+1
< 15

56
.

Let y ∈ Dk1,k2 and Sy be the set of vertices of the (k1, 2, dy)-system and (k2, 3, dy)-system

with center y. Then,

w(Sy)

5k1 + 7k2 + 1
≤ 1

5k1 + 7k2 + 1

[
k1

(
4

3
+

1

6dy

)
+ k2

(
15

8
+

1

8dy

)

+
1

2dy

(
k1

3
+
k2

4
+
dy − k1 − k2

3

)]
.

By subtracting 15
56

from both sides, the right hand side factors as

w(Sy)

5k1 + 7k2 + 1
− 15

56
≤ −dyk1 − 28k1 − 14k2 + 17dy

168(5k1 + 7k2 + 1)dy
.
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As dy ≥ k1 + k2, we have

dyk1 − 28k1 − 14k2 + 17dy ≥ k2
1 + k1k2 + 3k2 − 11k1.

But k2 ≥ 15− k1, so

k2
1 + k1k2 + 3k2 − 11k1 ≥ k1 + 45 > 0.

Hence, w(Sy)

5k1+7k2+1
< 15

56
.

Fix t ∈ [1, 3]. Let y ∈ Et
k and Sy be the set of vertices of the (k, 2, dy)-system and

(t, dy)-system with center y. Then,

w(Sy)

5k + 2t+ 1
≤ 1

5k + 2t+ 1

[
k

(
4

3
+

1

6dy

)
+ t

(
1

2
+

1

4dy

)
+

1

2dy

(
dy − t

3
+
t

2

)]
.

By subtracting 15
56

from both sides, the right hand side factors as

w(Sy)

5k + 2t+ 1
− 15

56
≤ −kdy − 28k + 6tdy − 56t+ 17dy

168(5k + 2t+ 1)dy
.

Since dy = k + t + s with s ≥ 2 (by Case (viii)), a simple check verifies that for t ∈ [1, 3],

k ∈ [1, 13− t] and s ∈ [2, 13− t− k], then

kdy − 28k + 6tdy − 56t+ 17dy > 0.

Hence, w(Sy)

5k+2t+1
< 15

56
.

It now follows that R−1(G) ≤ 15
56

(n+ 1), by summing the weights on each set of vertices

in the partition of G.

Observe that using n
4

instead of 15(n+1)
56

, then Cases (0)-(iii) in the proof of Theorem 3.3.5

hold. Thus, we can improve the upper bound in the case that G has no suspended paths.

Observation 3.3.6 Let G be a connected graph on n ≥ 3 vertices. If G has no suspended

paths, then

R−1(G) ≤ n

4
.

3.4 The effect edge deletion has on R−1(G)

In this section we look at the effect that edge deletion has on R−1(G). Recall that we

call an edge e = xy a leaf of G, if either dx = 1 or dy = 1, and a non-leaf edge otherwise.

Note that deleting a leaf edge of G creates an isolated vertex, thus, in the next two results

we assume the edge being deleted is a non-leaf edge. The first lemma is a result of Li and

Yang.
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Lemma 3.4.1 [43, Lemma 3.3] Let G be a graph and let e be an edge whose weight is

minimal over all edges in G. If e is a non-leaf edge, then

R−1(G− e) > R−1(G).

In the next theorem we determine the maximum change that can occur when deleting

an edge.

Theorem 3.4.2 Let G be a graph and let e be a non-leaf edge of G, then

R−1(G)− 1

4
< R−1(G− e) ≤ R−1(G) +

3

4
.

Furthermore, if G− e is connected, then

R−1(G− e) ≤ R−1(G) +
7

18
.

Proof. Let e = uv and du denote dGu and dv denote dGv . As e is a non-leaf edge, we have

du, dv ≥ 2. Then

R−1(G)−R−1(G− e) =
1

dudv
− 1

du(du − 1)

∑
i 6=v
i∼u

1

di
− 1

dv(dv − 1)

∑
i 6=u
i∼v

1

di
.

Thus,

R−1(G)−R−1(G− e) < 1

dudv
≤ 1

4
,

which gives the first inequality. Similarly, as di ≥ 1,

R−1(G)−R−1(G− e) ≥ 1

dudv
− 1

du
− 1

dv
.

It is not too hard to see that over the integers and for du, dv ≥ 2, the right hand side is

minimal when du = dv = 2. Hence,

R−1(G)−R−1(G− e) ≥ −3

4
.

If G− e is connected, then there are vertices î 6= v, ĵ 6= u (with possibly î = ĵ) such that

î ∼ u, ĵ ∼ v, dî > 1 and dĵ > 1. Thus,

R−1(G)−R−1(G− e) ≥ 1

dudv
− 1

2du(du − 1)
− du − 2

du(du − 1)
− 1

2dv(dv − 1)
− dv − 2

dv(dv − 1)
.
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It is not too hard to see that over the integers and for du, dv ≥ 2, the right hand side is

minimal when du = dv = 3. Hence, in the case that G− e is connected,

R−1(G)−R−1(G− e) ≥ −7

18
.

We illustrate the sharpness of Theorem 3.4.2 with three examples.

Example 3.4.3 Let G be the path on 4 vertices which has R−1(G) = 1.25. Removing the

non-leaf edge e of G, as illustrated in Figure 3.3, gives a disconnected graph with R−1(G−e) =

2. Thus, in this case, R−1(G− e) = R−1(G) + 3
4
.

t t te t
Figure 3.3: A graph G with an edge e where R−1(G− e) = R−1(G) + 3

4
.

Example 3.4.4 Let Ĝ be the path x1x2 · · ·x7 on 7 vertices, and add the edge e = x2x6 to

form a graph G as illustrated in Figure 3.4. Then Ĝ = G− e is connected and R−1(G− e) =

R−1(G) + 7
18

.

tx1 tx2 tx3 tx4 tx5 tx6 tx7

e

Figure 3.4: A graph G with an edge e where R−1(G− e) = R−1(G) + 7
18

.

Example 3.4.5 Let G be the graph of order n composed of a Kn−2 with a triangle xyz

attached to a vertex z of the Kn−2 as illustrated in Figure 3.5. Then using the edge e = xy,

we have, R−1(G) − R−1(G − e) = 1
4
− 1

n−1
. By taking n → ∞, the right hand side can be

made arbitrarily close to 1
4
.
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Figure 3.5: A graph G with an edge e where R−1(G)−R−1(G− e) = 1
4
− 1

n−1
.

79



4 THE NORMALIZED LAPLACIAN ENERGY

4.1 Introduction

Recall that the L-energy of a graph G is

EL(G) =
n∑
i=1

|λi(L)− 1|.

In this chapter, we show

2 ≤ EL(G) ≤ 2
⌊n

2

⌋
,

and characterize the graphs attaining these bounds. If G is connected, we show that the

upper bound on the L-energy can be improved to EL(G) <
√

15
28

(n+ 1). We provide a class

of connected graphs attaining L-energy EL(G) = n√
2

+O(1) and ask if this class has maximal

L-energy over all connected graphs. Finally, we discuss other bounds for EL(G) and how

edge deletion affects L-energy.

4.2 Upper and lower bounds on L-energy

Using Lemma 2.7.1 along with the results in Chapter 3, bounds can be derived on the

L-energy of a graph. If G has k connected components, in particular, G1, G2, . . . , Gk, then

EL(G) =
k∑
i=1

EL(Gi). (4.24)

We first provide a bound on the L-energy of a graph with k connected components which is

similar to the bound in Lemma 2.7.1.

Lemma 4.2.1 Let G be a graph of order n with k connected components and no isolated

vertices. Then

EL(G) ≤ k +
√

(n− k)(2R−1(G)− k).
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Proof. Note that 1 is an eigenvalue of I − L with multiplicity k, hence,

EL(G) = k +
n−k∑
i=1

|λi(I − L)|.

By the Cauchy-Schwarz inequality, using vectors (1, . . . , 1)T and

(|λ1(I − L)|, . . . , |λn−k(I − L)|)T ,

we obtain the upper bound

EL(G) ≤ k +

√√√√(n− k)
n−k∑
i=1

[λi(I − L)]2.

The result now follows by (2.21).

We next provide bounds on the L-energy in terms of the minimum and maximum degrees

of G.

Corollary 4.2.2 Let G be a graph of order n with k connected components and no isolated

vertices. Suppose G has minimum vertex degree equal to dmin and maximum vertex degree

equal to dmax. Then
n

n− 1
≤ n

dmax

≤ EL(G) ≤ n√
dmin

≤ n.

Furthermore,

EL(G) ≥ 2k.

Proof. Lemma 2.7.1 and Theorem 3.2.1 gives the first string of inequalities. For the last

inequality, by (4.24), it suffices to prove EL(G) ≥ 2k in the case that k = 1. Note that

λn(I − L) = 1, and the trace of I − L is 0. Thus,

EL(G) = 1 +
n−1∑
i=1

|λi(I − L)| ≥ 1 +

∣∣∣∣∣
n−1∑
i=1

λi(I − L)

∣∣∣∣∣ = 1 + | − 1| = 2. (4.25)

Corollary 4.2.2 implies that if G is a regular graph of degree r, then

n

r
≤ EL(G) ≤ n√

r
.

Over the graphs of order n with no isolated vertices, we characterize those that have maximal

and minimal L-energy.
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Corollary 4.2.3 Let G be a graph of order n with no isolated vertices. Then

EL(G) ≥ 2,

with equality if and only if G is a complete multipartite graph. Further,

EL(G) ≤ 2bn/2c,

with equality if and only if G is one of the following graphs:

(i) n is even and G is the disjoint union of n/2 paths of length 1, or

(ii) n is odd and G is the disjoint union of (n − 3)/2 paths of length 1 and one path of

length 2, or

(iii) n is odd and G is the disjoint union of (n−3)/2 paths of length 1 and a complete graph

on 3 vertices.

Proof. Equality in (4.25) occurs if and only if λn−1(I − L) ≤ 0, (equivalently λn−1(A) ≤ 0).

It is known that the adjacency matrix of G has only one positive eigenvalue if and only if G

is a complete multipartite graph plus isolated vertices (see [17]).

(a) n is even: By Corollary 4.2.2, we have EL(G) ≤ n. It can be seen that for equality

to hold we must have R−1(G) = n/2 and G must be regular of degree 1. Thus, G is the

disjoint union of n/2 paths of length 1, which indeed has EL(G) = n.

(b) n is odd: If n is odd, we first show that for connected graphs, EL(G) ≤ n − 1. If

n ≥ 7, then by Lemma 2.7.1 and Theorem 3.3.5, EL(G) < n − 1. If n = 5 and G has no

suspended paths, then by Lemma 2.7.1 and Observation 3.3.6, EL(G) < 4. If n = 5 and has

a suspended path, then there are only three such graphs and each has EL(G) < 4. If n = 3,

then both the path of length 2 and the complete graph on 3 vertices have energy n− 1 = 2.

This implies that if n is odd and G is a connected graph of order n, then EL(G) ≤ n − 1.

Equality in this bound occurs if and only if n = 3 and either G is a path of length 2 or a

complete graph K3.

Now suppose that G has k ≥ 2 connected components, in particular,

G1, G2, . . . , Gk,
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with each componentGi having ni vertices. Without loss of generality, suppose that n1, . . . , ns

are odd and ns+1, . . . , nk are even. Since n is odd, s ≥ 1. By (4.24),

EL(G) =
s∑
i=1

EL(Gi) +
n∑

i=s+1

EL(Gi),

≤
s∑
i=1

(ni − 1) +
n∑

i=s+1

ni,

= n− s,

≤ n− 1.

For equality EL(G) = n − 1 to hold, G can have only one odd connected component

which, by the above, must be of order 3. Any even connected component must be a path of

length 1, thus G must be one of the graphs listed in (ii) or (iii). Since the graphs in (ii)

and (iii) have energy n− 1, this completes the proof.

4.3 Bounds on L-energy over the class of connected graphs

The upper bound in Corollary 4.2.3 can be improved for connected graphs by using

Lemma 2.7.1 and Theorem 3.3.5.

Corollary 4.3.1 If G is a connected graph on n ≥ 3 vertices, then

EL(G) <

√
15

28
(n+ 1) < 0.732(n+ 1).

Furthermore, if G has no suspended paths (or more generally, R−1(G) ≤ n
4
), then

EL(G) ≤ n√
2
< 0.7072 n.

One might suspect that over the connected graphs that the path has maximal L-energy,

but in general, this is not true. We next provide some classes of graphs along with their

corresponding L-energy.

Example 4.3.2 Let G be a path on n vertices. Using the eigenvalues of L (see Example

1.6.3) we obtain

EL(G) = 2

b(n−1)/2c∑
k=0

cos(kπ/(n− 1)).
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By [28, page 37],

N∑
k=0

cos(kx) = cos

(
Nx

2

)
sin

(
N + 1

2
x

)
csc
(x

2

)
.

Thus, for the path, EL(G) ∼ 2
π
n.

Example 4.3.3 (a) For n odd, let G be a (t, t)-system with n = 2t + 1 vertices. The

normalized Laplacian matrix of G can be written in block form as

L =


It − 1√

2
It 0t

− 1√
2
It It − 1√

2t
1t

0Tt − 1√
2t

1Tt 1

 .
Thus, the eigenvalues are 0, 1, 2, each with multiplicity 1, and (1± 1√

2
) each with multiplicity

t− 1. Hence, the L-energy is

EL(G) =
n− 3√

2
+ 2 ∼ n√

2
.

(b) For n = 2t + 2 even, let G be the graph obtained by joining a vertex to a leaf of a

(t, t)-system. The normalized Laplacian matrix of G can be written in block form as

L =



1 − 1√
2

0Tt−1 0 0Tt−1 0

− 1√
2

1 0Tt−1 −1
2

0Tt−1 0

0t−1 0t−1 It−1 0t−1 − 1√
2
It−1 0t−1

0 −1
2

0Tt−1 1 0Tt−1 − 1√
2t

0t−1 0t−1 − 1√
2
It−1 0t−1 It−1 − 1√

2t
1t−1

0 0 0Tt−1 − 1√
2t
− 1√

2t
1Tt−1 1


.

The eigenvalues of this matrix are 0 and 2 each with multiplicity 1, (1 ± 1√
2
) each with

multiplicity t− 2 along with four other eigenvalues. To find the four missing eigenvalues we

use the fact that each block of L has constant row sums thus forming an equitable partition.

The quotient matrix is

1 − 1√
2

0 0 0 0

− 1√
2

1 0 −1
2

0 0

0 0 1 0 − 1√
2

0

0 −1
2

0 1 0 − 1√
2t

0 0 − 1√
2

0 1 − 1√
2t

0 0 0 − 1√
2t
− (t−1)√

2t
1


.
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Thus, the four missing eigenvalues are:

1±
√

6t2 ± 2t
√

9t2 − 8t

4t
,

each with multiplicity 1. Note that as t → ∞, these four eigenvalues approach 1, 1, 1 ±
√

3
2

.

This implies that

EL(G) ∼ n√
2
.

Example 4.3.3 provides a class of graphs with L-energy asymptotic to n√
2

and R−1(G)

asymptotic to n
4
. However, there is a small gap between the L-energy of the graphs in Exam-

ple 4.3.3 and the first bound listed in Corollary 4.3.1. In order to find graphs with L-energy

asymptotically larger than n√
2

we might consider graphs that have R−1(G) asymptotically

larger than n
4
. In particular, a (t, 3, t)-system (with n = 7t+ 1 vertices) and a (t, 2, t)-system

(with n = 5t + 1 vertices) have R−1(G) asymptotic to 15
56
n and 4

15
n respectively. If G is a

(t, 3, t)-system with n = 7t+ 1, then using a computer to test large values of n suggests that

EL(G) ≈ 0.671n. Similarly, if G is a (t, 2, t)-system with n = 5t+ 1, then using a computer

to test large values of n suggests that EL(G) ≈ 0.648n. It is curious that the L-energies of

these two systems are much smaller than n√
2
, yet their respective general Randić indices are

larger than that of Example 4.3.3.

For small values of n, Matlab was used to find maximal L-energy connected graphs for

3 ≤ n ≤ 10 by using a database of nonisomorphic connected graphs (in particular, [48]). For

n = 3, the path and triangle each have maximal L-energy of 2. For 4 ≤ n ≤ 6, the path

has maximal L-energy over the class of connected graphs. Note that for 4 ≤ n ≤ 6, the

path falls under the class of graphs described in Example 4.3.3. For 7 ≤ n ≤ 10, over all

connected graphs, the class of graphs in Example 4.3.3 have maximal L-energy. For n ≥ 11,

it is unknown which connected graphs have maximal L-energy.

We know of no class of connected graphs on n vertices that has L-energy (asymptotically)

larger than n√
2
. Corollary 4.3.1 implies such a graph G would have R−1(G) > n

4
and Obser-

vation 3.3.6 suggests such a graph should have a large number of suspended paths. Based

on our discussion above regarding the L-energy of a (t, 3, t)-system and a (t, 2, t)-system, we

ask the question: Over the connected graphs G of order n, is EL(G) ≤ n√
2

+ C, for some

suitable constant C? We put forth the following conjecture.

Conjecture 4.3.4 The graphs in Example 4.3.3 have maximal L-energy over the class of

connected graphs on n vertices.
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4.4 Other bounds on L-energy

We now look at other bounds on L-energy. We start with a lower bound that uses the

arithmetic-geometric mean inequality.

Theorem 4.4.1 Let G be a graph of order n with no isolated vertices and let ∆ = det(I−L).

Then

EL(G) ≥
√

2R−1(G) + n(n− 1)∆2/n.

Proof. Note that

EL(G)2 =
n∑
i=1

|1− λi(L)|2 + 2
∑

1≤i<j≤n

|1− λi(L)||1− λj(L)|,

= 2R−1(G) +
∑
i 6=j

|1− λi(L)||1− λj(L)|.

By the arithmetic-geometric mean inequality,

1

n(n− 1)

∑
i 6=j

|1− λi(L)||1− λj(L)| ≥

(∏
i 6=j

|1− λi(L)||1− λj(L)|

) 1
n(n−1)

= ∆2/n.

Hence, the result now follows.

We next relate the L-energy of a graph G to its A-energy, where A is the adjacency

matrix of G. Recall that the A-energy is simply

EA(G) =
n∑
i=1

|λi(A)|.

This quantity has been well studied by a large number of authors (see, for example, [30]).

The following result follows readily from Theorem 2.2.1.

Corollary 4.4.2 Let G be a graph of order n with no isolated vertices. Suppose dmin and

dmax are the minimum and maximum vertex degrees of G, respectively. Then,

dminEL(G) ≤ EA(G) ≤ dmaxEL(G).

Corollary 4.4.2 implies that if G is a regular graph of degree r, then EA(G) = rEL(G).

Since EA(G) is well studied, many bounds for EA(G) in the literature can be applied to

EL(G) by way of Corollary 4.4.2.
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4.5 The effect edge deletion has on L-energy

In this section, we look at the effect edge deletion has on EL(G). We begin with examples

to show that L-energy can increase, decrease or remain unchanged upon edge deletion. The

examples will also illustrate that the effect edge deletion has on the general Randić index does

not necessarily provide direct information about the effect edge deletion has on L-energy.

Example 4.5.1 In this example, we list the L-energy and general Randić index (to three

decimal places if appropriate) for each graph in Figures 4.1, 4.2 and 4.3.

(i) The graphs in Figure 4.1 have a decrease in L-energy upon deleting edge e. For the first

(resp. second and third) graph, 2 = EL(G − e) < EL(G) ≈ 2.457 (resp. 2 = EL(G − e) <
EL(G) ≈ 2.618 and 2 = EL(G − e) < EL(G) ≈ 2.704). For the first (resp. second and

third) graph, 1 = R−1(G − e) > R−1(G) ≈ 0.917 (resp. R−1(G − e) = R−1(G) = 1 and

1 = R−1(G− e) < R−1(G) = 1.05).

(ii) The graphs in Figure 4.2 have an increase in L-energy upon deleting edge e. For the

first (resp. second and third) graph, 2.869 ≈ EL(G − e) > EL(G) ≈ 2.667 (resp. 3.076 ≈
EL(G−e) > EL(G) ≈ 2.904 and 3.117 ≈ EL(G−e) > EL(G) = 3). For the first (resp. second

and third) graph, 1.111 ≈ R−1(G−e) > R−1(G) ≈ 1.028 (resp. R−1(G−e) = R−1(G) ≈ 1.007

and 0.928 ≈ R−1(G− e) < R−1(G) ≈ 0.978).

(iii) The graphs in Figure 4.3 have no change in L-energy upon deleting edge e. For the

first (resp. second) graph, EL(G − e) = EL(G) = 2 (resp. EL(G − e) = EL(G) ≈ 2.781).

For the first (resp. second) graph, 1 = R−1(G − e) > R−1(G) = 0.75 (resp. R−1(G − e) =

R−1(G) = 1.0625). The only remaining case is where upon edge deletion, L-energy remains

constant while R−1(G) decreases. We do not know of a graph that has this property.
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Figure 4.1: Graphs for which L-energy decreases upon deleting edge e.

The next result provides a bound on how much the L-energy can change upon edge

deletion.
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Figure 4.2: Graphs for which L-energy increases upon deleting edge e.
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Figure 4.3: Graphs for which L-energy remains constant upon deleting edge e.

Theorem 4.5.2 Let G be a graph of order n without isolated vertices and let e be a non-leaf

edge of G. Then,

|EL(G)− EL(G− e)| ≤ 2

√
13

2
− 4
√

2 ≤ 1.8366.

Proof. Let LG and LG−e be the normalized Laplacian matrices of G and G− e, and suppose

e = xy. Let C = LG − LG−e. Observe that by Theorem 1.4.2, we can derive

|EL(G)− EL(G− e)| ≤
n∑
i=1

σi(C).

Note that rank(C) ≤ 4. Let the eigenvalues of C be 0 with multiplicity n − 4 and

λ1, λ2, λ3, λ4.Then,
n∑
i=1

σi(C) = |λ1|+ |λ2|+ |λ3|+ |λ4|.

By the Cauchy-Schwarz inequality, |EL(G)− EL(G− e)| ≤ 2
√
tr(C2), which equals:

2
√

2

√√√√√ 1

dxdy
+
∑
j 6=y
j∼x

(
1√
dxdj

− 1√
(dx − 1)dj

)2

+
∑
j 6=x
j∼y

(
1√
dydj

− 1√
(dy − 1)dj

)2

,

≤ 2
√

2

√
1

4
+

(√
dx − 1−

√
dx
)2

dx
+

(√
dy − 1−

√
dy
)2

dy
.

The 1
4

comes from setting dx = dy = 2, as this is when the first term is maximal, and the

other two expressions come from noticing dj ≥ 1. The function

f(x) =

(√
x− 1−

√
x
)2

x

88



has f ′(x) < 0, for x > 1. Thus, as dx, dy ≥ 2, |EL(G)− EL(G− e)| ≤ 2
√

13
2
− 4
√

2.
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5 SUMMARY AND FUTURE CONSIDERATIONS

5.1 Largest normalized Laplacian eigenvalue

In [12], there is a great emphasis on finding bounds on λ2(L) and its relationship to

the Cheeger constant. However, there is not much discussed in [12] regarding bounds on

λn(L). As discussed in Section 2.4, an intuitive interpretation of λn(L) is a measure of how

close a graph is to being bipartite. It would be interesting to determine bounds on λn(L)

in terms of other parameters of a graph, for example, the diameter. Note that Chung does

make a connection between diamater, λ2(L) and λn(L) (for example, see [12, Equation 3.2]).

Other bounds could be obtained by extending results from the recent paper by Trevisan [64],

where the concept of the bipartiteness ratio of a graph is introduced and bounded in terms

of λ1(1
r
A) for r-regular graphs.

One reason to analyze λn(L) in more detail is because maxi 6=1 |1− λi(L)| shows up when

looking at random walks, and the maximum occurs at either λ2(L) or λn(L). Chung claims

that when analyzing random walks in weighted graphs only λ2(L) is crucial in the sense that

if λn(L)− 1 ≥ 1− λ2(L) then one can form a new graph G′ by adding loops and consider a

modified random walk called the lazy walk. Then, in the new graph, the upper bound for the

distance between the stationary distribution and the k-step distribution can be written in

terms of λ2(L) while omitting λn(L). However, when dealing with random walks on simple

undirected graphs, λn(L) does play an important role. A more indepth study of λn(L) is

needed given its importance when looking at the structure of a graph and its relationship to

random walks.
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5.2 Cospectral graphs with respect to the L-eigenvalues

It should be noted that if G1 and G2 are both complete bipartite graphs on the same

number of vertices, then they are cospectral with respect to the L-eigenvalues. This demon-

strates that cospectral graphs with respect to L do not require the same number of edges.

This is contrary to being cospectral with respect to the adjacency eigenvalues.

An interesting example of cospectral graphs with respect to the L-eigenvalues is the

following. Let G be the graph on the right in Figure 4.3 and e the labelled edge. It was

mentioned that G and G − e have the same L-energy. In fact, a stronger statement holds,

that is, G and G − e are cospectral with respect to the L-eigenvalues. In this case, edge

deletion does not change the L-spectrum. It is interesting to know if other graphs exist with

the property that edge deletion does not change the L-spectrum.

5.3 Graphs having exactly three distinct L-eigenvalues

We know of no graph that has exactly three distinct L-eigenvalues and at least four

distinct vertex degrees. If such a graph does not exist, perhaps (2.14) can be used to show

this. Further, Theorem 2.6.6 provides graphs with three distinct vertex degrees that have a

vertex of degree 1. We ask the question if there exists graphs with three distinct L eigenvalues

and three distinct vertex degrees such that no vertex is of degree 1.

It would be interesting to know in the case of a graph G with exactly three distinct L-

eigenvalues and two distinct vertex degrees (partitioned into parts A∪B, where vertices in A

have the same degree and vertices in B have the same degree), if the induced subgraph of G

on A and the induced subgraph of G on B need to be a strongly regular graph, the complete

graph, or the empty graph. If so, a technique similar to that of the proof of Theorem 2.6.6

might work.

5.4 The general Randić index R−1(G)

Since the motivation for the general Randić index originated from theoretical chemistry,

many of the older results that are known about Rα(G) are for trees. Recently, there has

been some interest in Rα(G) for general graphs.

The strong connection between R−1(G) and the normalized Laplacian spectrum provides

motivation to study the behaviour of R−1(G) for graphs in general and not just trees. A first

91



step would be to refine the bound in Theorem 3.3.5, that is, provide a sharp upper bound

for all values of n. Given the corresponding result for trees (of order n ≥ 720), this will

definitely take some careful consideration. In particular, Pavlović, Stojanović and Li [53]

proved the following for trees.

Theorem 5.4.1 [53] For a tree T tn of order n ≥ 720,

R−1(T Tn ) ≤ R∗−1(T tn) =



15n−1
56

, t = 0
15n−1

56
− 1

56
+ 7

4(n+5)
, t = 1

15n−1
56
− 3

5
· 1

56
− 7

20(n−3)
, t = 2

15n−1
56
− 2

3
· 1

56
+ 7

6(n+3)
, t = 3

15n−1
56
− 6

5
· 1

56
− 7

20(n−12)
, t = 4

15n−1
56
− 1

3
· 1

56
+ 7

12(n+1)
, t = 5

15n−1
56
− 29

27
· 1

56
− 35

36(n−35)
, t = 6,

where R∗−1(T tn) is the maximum value of the general Randić index over the class of trees of

order n with n congruent to t (modulo 7).

Pavlović, Stojanović and Li [53] also provided classes of trees of every order n (with

n ≥ 720) that achieves the maximum value in Theorem 5.4.1. We suspect a similar result

holds for R−1(G) over the class of connected graphs, perhaps with the same maximum values

as in the tree case. One approach is to show that for each n, there is a tree on n vertices

that maximizes R−1(G) over the connected graphs of order n. As demonstrated in Example

3.3.3, looking at the spanning trees is not enough.

5.5 Normalized Laplacian energy

Settling Conjecture 4.3.4 is an open problem. A lot of evidence has been provided to

demonstrate why Conjecture 4.3.4 may be true and perhaps a more detailed look at the

general Randić index and its relationship to the L-eigenvalues will help.

The bound given in Theorem 4.5.2 on the maximum change in L-energy when an edge is

deleted is far from optimal. Matlab suggests that using the method in the proof of Theorem

4.5.2 can do no better than 1.56 as an upper bound on |EL(G) − EL(G − e)|. If we have

additional information about the graph, then analyzing the inequalities in the proof can

improve the bound. In particular, if we have vertices with large degree, then the upper
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bound becomes much smaller. Thus, a technique to handle vertices of low degree can be

combined with the proof of Theorem 4.5.2 to obtain a refined upper bound. It should be

noted that before using the singular value approach in Theorem 4.5.2 that an interlacing

technique was attempted (in the obvious manner), however, this produced weaker bounds of

−4 ≤ EL(G)− EL(G− e) ≤ 2. We ask, what are the optimal values of c1 and c2 so that

−c1 ≤ EL(G)− EL(G− e) ≤ c2

holds for any graph G and edge e of G (where G and G − e contain no isolated vertices).

Theorem 4.5.2 shows that c1, c2 ≤ 1.8366 and examples of graphs are known that show c1 ≥ 1

and c2 ≥ 0.7575. We suspect that c1 = 1 is optimal and that c2 < 1, however, determining

the true values of c1, c2 remains an open problem.

The analagous problem for energy (allowing graphs with isolated vertices) has been solved

as illustrated in the following result due to Day and So.

Lemma 5.5.1 [22, Corollary 2.7] Let e be an edge of a graph G, then

−2 ≤ EA(G)− EA(G− e) ≤ 2.

Equality in the upper bound holds if and only if e is an isolated edge of G and equality in the

lower bound never holds.

Furthermore, an example provided by S. Cioabă (see [22, Example 3.5]) shows that the

gap in the lower bound in Lemma 5.5.1 can be arbitrarily small.
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[18] D. Cvetković, P. Rowlinson, and S. Simić, Eigenspaces of Graphs, Cambridge University

Press, Cambridge, 1997.

[19] E. van Dam and W. Haemers, Graphs with constant µ and µ̄, Discrete Math., 182

(1998), 293-307.

[20] E. van Dam and W. Haemers, Which graphs are determined by their spectrum?, Linear

Algebra Appl., 373 (2003), 241-272.

[21] E. van Dam and W. Haemers, Developments on spectral characterizations of graphs,

Discrete Math., 309 (2009), 576-586.

[22] J. Day and W. So, Singular value inequality and graph energy change, Electron. J.

Linear Algebra, 16 (2007), 291-299.

[23] R. Diestel, Graph Theory, Springer-Verlag, Heidelberg, Third Edition, 2005.

[24] K. Fan, Maximum properties and inequalities for the eigenvalues of completely contin-

uous operators, Proc. Natl. Acad. Sci. USA 37 (1951), 760-766.
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the best upper bound for the Randić index R−1 of trees”, MATCH Commun. Math.

Comput. Chem., 56 (2006), 409-414.

97
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[55] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc., 97 (1975),

6609-6615.
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