COURSE OUTLINE

1. **Course:** PHYS 449, Statistical Mechanics I - Fall 2019
 Lecture 01: TR 12:30 - 13:45 in ES 443

 Instructor
 Dr Joern Davidsen
 Email
 davidsen@phas.ucalgary.ca
 Phone
 403 210-7964
 Office
 SB 505
 Hours
 Tu 14:00-15:00

 Course Site:
 D2L: PHYS 449 L01-(Fall 2019)-Statistical Mechanics I

 Note: Students must use their U of C account for all course correspondence.

2. **Requisites:**
 See section 3.5.C in the Faculty of Science section of the online Calendar.

 Prerequisite(s):
 Physics 229 or 325; and 343; and Mathematics 375 or 376; and Mathematics 367 or 377.

3. **Grading:**
 The University policy on grading and related matters is described in F.1 and F.2 of the online University Calendar.

 In determining the overall grade in the course the following weights will be used:

 - Assignments (8): 40%
 - Midterm Exam (1): 20% (during regular class hours)
 - Final Examination: 40% (To be scheduled by the Registrar)

 Each piece of work (reports, assignments, quizzes, midterm exam(s) or final examination) submitted by the student will be assigned a grade. The student's grade for each component listed above will be combined with the indicated weights to produce an overall percentage for the course, which will be used to determine the course letter grade.

 The conversion between a percentage grade and letter grade is as follows.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum % Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>90 %</td>
</tr>
<tr>
<td>A</td>
<td>85 %</td>
</tr>
<tr>
<td>A-</td>
<td>80 %</td>
</tr>
<tr>
<td>B+</td>
<td>75 %</td>
</tr>
<tr>
<td>B</td>
<td>70 %</td>
</tr>
<tr>
<td>B-</td>
<td>65 %</td>
</tr>
<tr>
<td>C+</td>
<td>60 %</td>
</tr>
<tr>
<td>C</td>
<td>55 %</td>
</tr>
<tr>
<td>C-</td>
<td>50 %</td>
</tr>
<tr>
<td>D+</td>
<td>45 %</td>
</tr>
<tr>
<td>D</td>
<td>40 %</td>
</tr>
</tbody>
</table>

 This course has a registrar scheduled final exam.

4. **Missed Components Of Term Work:**
 In the event that a student misses the midterm or any course work due to illness, supporting documentation, such as a medical note or a statutory declaration will be required (see Section M.1; for more information regarding the use of statutory declaration/medical notes, see FAQ). Absences must be reported within 48 hrs.

 The regulations of the Faculty of Science pertaining to this matter are found in the Faculty of Science area of the Calendar in Section 3.6. It is the student's responsibility to familiarize themselves with these regulations. See also Section E.3 of the University Calendar.

5. **Scheduled Out-of-Class Activities:**
 There are no scheduled out of class activities for this course.
6. **Course Materials:**

 Recommended Textbook(s):

 Assignments, and supporting lecture material will be posted on the course D2L website.

7. **Examination Policy:**

 Final exam and midterm test are closed book. No calculators or laptops will be allowed.

 Students should also read the Calendar, Section G, on Examinations.

8. **Approved Mandatory And Optional Course Supplemental Fees:**

 None.

9. **Writing Across The Curriculum Statement:**

 For all components of the course, in any written work, the quality of the student's writing (language, spelling, grammar, presentation etc.) can be a factor in the evaluation of the work. See also Section E.2 of the University Calendar.

10. **Human Studies Statement:**

 See also Section E.5 of the University Calendar.

11. **Reappraisal Of Grades:**

 A student wishing a reappraisal, should first attempt to review the graded work with the Course coordinator/instructor or department offering the course. Students with sufficient academic grounds may request a reappraisal. Non-academic grounds are not relevant for grade reappraisals. Students should be aware that the grade being reappraised may be raised, lowered or remain the same. See Section I.3 of the University Calendar.

 a. **Term Work:** The student should present their rationale as effectively and as fully as possible to the Course coordinator/instructor within 10 business days of either being notified about the mark, or of the item's return to the class. If the student is not satisfied with the outcome, the student shall immediately submit the Reappraisal of Graded Term work form to the department in which the course is offered. The department will arrange for a re-assessment of the work if, and only if, the student has sufficient academic grounds. See sections I.1 and I.2 of the University Calendar.

 b. **Final Exam:** The student shall submit the request to Enrolment Services. See Section I.3 of the University Calendar.

12. **Other Important Information For Students:**

 a. **Mental Health** The University of Calgary recognizes the pivotal role that student mental health plays in physical health, social connectedness and academic success, and aspires to create a caring and supportive campus community where individuals can freely talk about mental health and receive supports when needed. We encourage you to explore the mental health resources available throughout the university community, such as counselling, self-help resources, peer support or skills-building available through the SU Wellness Centre (Room 370, MacEwan Student Centre, [Mental Health Services Website](https://www.ucalgary.ca/wellnesscentre)) and the Campus Mental Health Strategy website ([Mental Health](https://www.ucalgary.ca/policies/files/policies/sexual-violence-policy.pdf)).

 b. **SU Wellness Center:** The Students Union Wellness Centre provides health and wellness support for students including information and counselling on physical health, mental health and nutrition. For more information, see www.ucalgary.ca/wellnesscentre or call 403-210-9355.

 c. **Sexual Violence:** The University of Calgary is committed to fostering a safe, productive learning environment. The Sexual Violence Policy (https://www.ucalgary.ca/policies/files/policies/sexual-violence-policy.pdf) is a fundamental element in creating and sustaining a safer campus environment for all community members. We understand that sexual violence can undermine students' academic success and we encourage students who have experienced some form of sexual misconduct to talk to someone about their experience, so they can get the support they need. The Sexual Violence Support Advocate, Carla Bertsch, can provide confidential support and information regarding sexual violence to all members of the university community. Carla can be reached by email (svsa@ucalgary.ca) or phone at 403-220-2208.

 d. **Misconduct:** Academic misconduct (cheating, plagiarism, or any other form) is a very serious offence that will be dealt with rigorously in all cases. A single offence may lead to disciplinary probation or suspension or
expulsion. The Faculty of Science follows a zero tolerance policy regarding dishonesty. Please read the sections of the University Calendar under Section K, Student Misconduct to inform yourself of definitions, processes and penalties. Examples of academic misconduct may include: submitting or presenting work as if it were the student’s own work when it is not; submitting or presenting work in one course which has also been submitted in another course without the instructor's permission; collaborating in whole or in part without prior agreement of the instructor; borrowing experimental values from others without the instructor's approval; falsification/ fabrication of experimental values in a report. These are only examples.

e. **Assembly Points:** In case of emergency during class time, be sure to FAMILIARIZE YOURSELF with the information on assembly points.

f. **Academic Accommodation Policy:** Students needing an accommodation because of a disability or medical condition should contact Student Accessibility Services in accordance with the procedure for accommodations for students with disabilities available at procedure-for-accommodations-for-students-with-disabilities.pdf.

Students needing an accommodation in relation to their coursework or to fulfill requirements for a graduate degree, based on a protected ground other than disability, should communicate this need, preferably in writing, to the Associate Head of the Department of Physics & Astronomy, Dr. David Feder by email phas.ahugrd@ucalgary.ca or phone 403-220-8127. Religious accommodation requests relating to class, test or exam scheduling or absences must be submitted no later than 14 days prior to the date in question. See Section E.4 of the University Calendar.

g. **Safewalk:** Campus Security will escort individuals day or night (See the Campus Safewalk website). Call 403-220-5333 for assistance. Use any campus phone, emergency phone or the yellow phones located at most parking lot pay booths.

h. **Freedom of Information and Privacy:** This course is conducted in accordance with the Freedom of Information and Protection of Privacy Act (FOIPP). Students should identify themselves on all written work by placing their name on the front page and their ID number on each subsequent page. For more information, see Legal Services website.

i. **Student Union Information:** VP Academic, Phone: 403-220-3911 Email: suvpac@ucalgary.ca. SU Faculty Rep., Phone: 403-220-3913 Email: sciencerep@su.ucalgary.ca. Student Ombudsman, Email: ombuds@ucalgary.ca.

j. **Internet and Electronic Device Information:** Unless instructed otherwise, cell phones should be turned off during class. All communication with other individuals via laptop, tablet, smart phone or other device is prohibited during class unless specifically permitted by the instructor. Students that violate this policy may be asked to leave the classroom. Repeated violations may result in a charge of misconduct.

k. **Surveys:** At the University of Calgary, feedback through the Universal Student Ratings of Instruction (USRI) survey and the Faculty of Science Teaching Feedback form provides valuable information to help with evaluating instruction, enhancing learning and teaching, and selecting courses. Your responses make a difference - please participate in these surveys.

l. **Copyright of Course Materials:** All course materials (including those posted on the course D2L site, a course website, or used in any teaching activity such as (but not limited to) examinations, quizzes, assignments, laboratory manuals, lecture slides or lecture materials and other course notes) are protected by law. These materials are for the sole use of students registered in this course and must not be redistributed. Sharing these materials with anyone else would be a breach of the terms and conditions governing student access to D2L, as well as a violation of the copyright in these materials, and may be pursued as a case of student academic or non-academic misconduct, in addition to any other remedies available at law.

Course Description
State-counting; classical distributions; origins and role of entropy; equilibrium; microcanonical, canonical, and grand canonical ensembles; concepts of work, heat, and temperature; equations of state; heat capacity; equipartition theorem; engines; laws of thermodynamics; non-equilibrium systems; Maxwell-Boltzmann distribution; enthalpy and free energies.

Syllabus
1. Thermodynamics
 1.1. Basic notation: thermodynamics systems, equilibrium
 1.2. Work: quasistatic changes, exact and inexact differentials, integrating factor
1.3. Heat & 1st law of thermodynamics
1.4. 0th law of thermodynamics & temperature
1.5. Heat capacities: gas, magnet
1.6. Adiabats & isotherms: ideal gas, black-body radiation or the photon gas
1.7. 2nd law of thermodynamics: heat engines, efficiency, refrigerators, formulations by Kelvin and Clausius
1.8. Carnot engines: reversible and cyclic processes, Carnot's theorem
1.9. Thermodynamic temperature scale
1.10. Clausius theorem, thermodynamic entropy and the 2nd law: formulation by Planck, reversible and irreversible processes
1.11. Thermodynamic potentials: Maxwell relations, Legendre transformation, Helmholtz free energy, enthalpy, Gibbs free energy, grand potential
1.12. Approach to equilibrium and equilibrium conditions: isolated system, closed systems
1.13. 3rd law of thermodynamics: formulation by Nernst and consequences

2. Probability theory & statistics
2.1. Basic notation: probability space, probability axioms, interpretations of probability, microstates, macrostates, binomial distribution
2.2. Characteristics of probability distributions: mean, variance, standard deviation, relative uncertainty, law of large numbers
2.3. Gaussian distribution and continuous random variables: Stirling's formula, cumulative distribution function, probability density function, change of random variable
2.4. Many continuous random variables & central limit theorem: independent random variables, joint, unconditional and conditional probability density functions, Bayes' theorem
2.5. Information & Shannon entropy: multinomial coefficient, maximum entropy principle and motivation of the central postulate of statistical mechanics

3. Kinetic theory of gases
3.1. Hamiltonian dynamics & phase space: equivalence of Hamilton's equations of motion and Lagrange's equations of motion, equivalence of Hamiltonian and total mechanical energy
3.2. Microstates, macrostates and phase space density: ensemble averages
3.3. Liouville's theorem: conservation of probability, equilibrium at the macroscopic level from a microscopic description, possible solutions and the central postulate of statistical mechanics
3.4. Ergodicity
3.5. 2nd law of thermodynamics revisited: time-reversal symmetry of Hamilton's equations of motion (time permitting), implications of ergodicity and the arrow of time

4. Classical statistical mechanics
4.1. Rules for large numbers: saddle point integration
4.2. Microcanonical ensemble: central postulate of statistical mechanics, entropy equivalence (Shannon/Boltzmann vs. thermodynamic), recipe for deriving the thermodynamic properties of a system
4.3. Canonical ensemble: partition function, Helmholtz free energy
4.4. Examples: Two-level system (heat capacity), ideal gas (internal energy, equation of state, Maxwell-Boltzmann distribution, interpretation of random variable)
4.5. Mixing entropy and Gibbs paradox: indistinguishable particles, coarse-grained phase space, ideal gas revised
4.6. Gibbs canonical ensemble: ideal gas in isobaric ensemble (enthalpy, heat capacities), non-interacting Ising model with external magnetic field (magnetic susceptibility, heat capacity)
4.7. Virial theorem (time permitting): average temperature of the sun, mass of distant galaxies
4.8. Equipartition theorem (time permitting)

General course information

i) Textbook & lecture notes:
As none of the currently available textbooks satisfactorily covers all aspects of the course, there are two textbooks listed under course material. For more information on the two textbooks and their supporting online material including free downloads, please see our course D2L website. On D2L, I have also listed a number of additional books and other reference material that might be helpful for you to follow up on specific aspects covered in class. I strongly encourage you to look at other books on the course topics as well since some of you might find the presentation in a given book (more) accessible while other might not. Being able to identify suitable, reliable and understandable reference sources on a given topic (if necessary) is one of the keys to success in this class and beyond. While some students learn best in class by taking detailed notes, for others this is more a distraction from following and understanding the key concepts - and identifying my mistakes - in class. It is important to figure out which approach works best for you and act accordingly. It also might be helpful to team up with other students to share class notes and discuss specific topics.

ii) Grading philosophy:
Because I try to encourage participation as much as possible, I have put a heavier accent on assignments than is maybe customary.

iii) Midterm:
The in-class midterm (75 min long) will focus on the material covered up to and including the last homework assignment before the midterm.
Course Learning Outcomes

Students taking PHYS 449 are expected to have prior knowledge in higher dimensional calculus, integrating techniques, calculus of variations, Gamma functions, series expansions and geometric series as covered in the
required math courses. They also are expected to have prior knowledge of (i) discrete states typical for quantum mechanical systems as covered in PHYS 229 or PHYS 325, and (ii) phase space, Hamiltonian dynamics, Legendre transformation, calculus of variations and Lagrange multipliers as covered in PHYS 343.

Course Outcomes:

- The student can explain the concepts of work, heat, temperature, heat engine, thermodynamic entropy, equilibrium and quasi-static changes to precisely formulate the laws of thermodynamics, derive the relationship between different formulations and explain the consequences
- The student can explain the concept of a Carnot engine and prove Carnot's theorem
- The student can derive Clausius theorem and explain its relation to thermodynamic entropy
- The student can explain the concept of thermodynamic potentials and derive the relationship between them and derive their extremal properties
- The student can apply probability theory for discrete and continuous random variables to derive the central limit theorem
- The student can explain the concepts of information and Shannon entropy and apply the maximum entropy principle
- The student can explain the basic concepts of microstates, macrostates and phase space density. The student can apply them to formulate the concept of ergodicity and Liouville's theorem and explain the implications for the concept of equilibrium and time-reversibility
- The student can explain the basic concepts of classical statistical mechanics and their underlying assumptions, the relationship between the different ensembles and use them to calculate the thermodynamic properties in a given application
- The student is able to identify suitable, reliable and understandable reference material and critique original peer-reviewed literature on thermodynamics and statistical mechanics
- The student can solve problems individually or in teams and communicate his/her own understanding of a given topic clearly in written and oral form

Department Approval: Electronically Approved
Date: 2019-08-24 10:33