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Newton’s proof of the connection between 
elliptical orbits and inverse-square forces 
ranks among the “top ten” calculations in 

the history of science. This time-honored calculation 
is a highlight in an upper-level mechanics course.  
It would be worthwhile if students in introductory 
physics could prove the relation elliptical orbit ➯  
1/r2 force without having to rely on upper-level 
mathematics. We introduce a simple procedure—
Newton’s Recipe—that allows students to readily and 
accurately deduce the algebraic form of force laws 
from a geometric analysis of orbit shapes.

Newton’s Recipe is based on a hidden gem in 
Newton’s Principia—the “PQRST Formula,” which is 
a simple geometric version of F = ma. Given any kind 
of orbital curve (elliptical, spiral, etc.), this formula 
allows one to deduce the force simply by measuring 
the lengths of three line segments—the “shape param-
eters” of the orbit. There are no differential equations 
or computational programs.

In our “Orb Lab,” students solve the celebrated  
Kepler Problem: Given an ellipse, find the force. Stu-
dents draw a large ellipse, cut it into small pieces (para-
bolic arcs), measure the force at a point on each arc, 
and see how the force varies along the orbit. In essence, 
the class discovers one of the most fundamental laws 
of nature—the law of gravity—using string, tacks, and 
a ruler, along with a little help from Galileo, Newton, 
and Kepler. 

Force and Geometry
There exists a deep connection between force and 

geometry. A constant force causes a body to move in 
a parabolic path. A constant centripetal force causes 
a body to move in a circular path. In 1609, Johannes 
Kepler reported that the planet Mars moves in an el-
liptical orbit. What kind of force causes a planet to 
move in an elliptical path? What is the force law—the 
law that specifies how the force F(r) depends on the 
distance r between the Sun and the planet? This Kepler 
problem challenged the natural philosophers of the 
17th century. In general, there are two kinds of prob-
lems in orbital mechanics:

	 Direct Problem:  Given the orbit shape, find the 
force law.

	 Inverse Problem:  Given the force law, find the orbit 
shape.

Isaac Newton solved these problems in his 
Mathematical Principles of Natural Philosophy, pub-
lished in 1687.1 Table I displays some of Newton’s 
results. In our introductory course, students solve the 
direct problem. 

Orbit Shape “Sun” Location Force Law

Circle Circumference 1/r5

Spiral Pole 1/r3

Ellipse Center r

Ellipse Focus 1/r2

Table I. Force-geometry problems solved by Newton.
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Geometric Measure of Force

One of the most important formulas in Newton’s 
Principia is the formula that relates centripetal force 
and orbit geometry. This formula is the basis for New-
ton’s orbital mechanics.2 We present a modern, peda-
gogical view of Newton’s geometric measure of force.

Consider a planet orbiting the Sun. In a certain 
time interval, the planet moves from point P to point 
Q along the orbit as shown in Fig. 1. If no force acted 
on the planet, then the planet would move along the 
tangent line PR with the constant velocity it had at 
P. Because of the force, the planet moves along the 
curved path PQ. The deviation QR of the curved or-
bit from the straight tangent provides a measure of the 
force.

What is the mathematical relation between the 
force and the deviation? The crucial insight of New-
ton was to realize that for small time intervals, the 
variable force can be treated as a constant force in both 
magnitude and direction. This crucial “parabolic 
approximation” is illustrated in Fig. 2. In effect, by 
focusing on tiny parts of the whole orbit, Newton re-
placed the complex ellipses of Kepler with the simple 
parabolas of Galileo.

Given the equivalence between projectile motion 
and short-time orbital motion, we can readily derive 
the relation between the force F and the deviation d.  
The orbital motion can be viewed as a combination 
of two independent component motions: inertial mo-
tion due to the constant velocity alone (no force) and 
falling motion due to the constant force alone (no ve-
locity).3  The continual deviation d of the orbit from 
the tangent due to the constant force coincides with 
the uniformly accelerated falling motion of the planet.  
During a time t (infinitesimal), the distance the planet 
falls is 

d  =  ½ at2 .	 				     (1)

The constant acceleration a of the planet of mass m 
is related to the constant force F via Newton’s law of 
motion:

F  =  ma.	 				     (2)

Combining the kinematic relation in Eq. (1) with 
the dynamic law in Eq. (2) gives

			      
F  =  2m d /t2.	 			   (3)

The important content of the force formula in Eq. 
(3) is the proportional relation

F    d /t2 .	 				    (4)

The geometric measure of force, force  deviation 
of orbit, is the forerunner of the modern algebraic 
notion of force, force  change in momentum (for a 
given time interval). 

Our goal is to find a formula that measures the 
force on the planet solely from a diagram of the orbit.  
To convert Eq. (4) into a purely geometric formula, 
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Fig. 1. The force that deflects a planet away from the 
inertial path PR toward the Sun (below P) is measured 
by the deviation QR of the actual curved orbit PQ from 
the virtual straight tangent.
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Fig. 2. During an infinitesimal time, the orbital arc PQ 
is approximately parabolic and the variable force is 
approximately constant. The magnitude of the force 
depends on the Sun-planet distance SP<SQ. The direc-
tion of the force is parallel to SP.
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we need to know where to place the temporal  
parameter t in the orbital diagram. How does the 
shape of the orbit provide information on the time of 
transit?

The geometric measure of time is provided by 
Kepler’s law of areas. This law says that the line con-
necting the Sun and the planet sweeps out equal areas 
in equal times. In other words, the time t that elapses 
is proportional to the area A that is swept out: t  A.  
Given this time-area relation, we can write Eq. (4) as 

F    d /A2.	 				    (5)

Equation (5) is illustrated in Fig. 3. 
In summary, the geometric measure of force,  

F  d /A2, stems from four elementary principles:  (1) 
parabolic approximation: F is constant for small t and 
d, (2) kinematic relation: d = ½at 2 (Galileo), (3) dy-
namic law: F = ma (Newton), and (4) area law: t  A 
(Kepler).

Newton’s Force Formula
Newton’s version4 of the basic force formula, F  

d /A2 (d→0), is

F    QR/(SP 3 QT)2    (Q→P).		  (6)

The force at point P depends on the length of three 
line segments (QR, SP, QT) that characterize the 
shape of the orbit around P. These three shape  
parameters are defined in Fig. 4. As we have seen, the 
deviation d of the orbit from the tangent is equal to 
QR. In the limit Q→P, the area A of the sector swept 
out during the motion from P to Q is equal to the 
area of the triangle SPQ as shown in Fig. 4. The tri-
angle SPQ has base SP, height QT, and area  
½(SP 3 QT). Given the relations d = QR and  
A = ½(SP 3 QT), our force formula in Eq. (5) is 
equivalent to Newton’s formula in Eq. (6).

Note that Eq. (6) measures the relative value of the 
force at a particular point in the orbit. The dimen-
sion of Newton’s force measure QR/(SP 3 QT)2 is 
1/(length)3. Like Newton, we will measure force in 
the purely geometric units of an inverse volume.5  

These units are perfectly fine because like Newton, we 
are only interested in comparing the force values at 
different points in the orbit. In what follows, the sym-
bol F will denote the force measure QR/(SP 3 QT)2.

The force formula in Eq. (6) is the hallmark of 
Newton’s geometric (Euclidean) approach to dynam-
ics. The formula is not confined to celestial motion.  
The formula is valid for any kind of motion due to a 
centripetal force—any force directed toward a fixed 
point (force center).
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Fig. 3. The geometric measure of force, F  d/A2, depends 
on the deviation d of the orbit from the tangent line 
and the area A swept out by the radial line. The limit-
ing value of d/A2 (for infinitesimal d and A) provides an 
exact measure of the force at point P due to the Sun S.
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Fig. 4. Newton’s diagram for measuring the force on a 
planet at point P of the orbit. Point Q is any future point.  
The radial line SP connects the Sun S to the planet. The 
deviation line QR separates the orbital arc PQ from 
the inertial tangent PR and is parallel to SP (the force 
direction). The time line QT is the height of the “time 
triangle” SPQ and is perpendicular to SP.



The Physics Teacher ◆ Vol. 45, January 2007	 23

Newton’s Recipe
Given only two ingredients—the shape of the orbit 

and the center of the force—“Newton’s Recipe” allows 
one to calculate the relative force at any orbital point.  
The recipe consists of the following steps:

1.  	The inertial path:  Draw the tangent line to the 
orbit curve at the point P where the force is to be 
calculated.

2.  	The future point:  Locate any future point Q on 
the orbit that is close6 to the initial point P.

3.  	The deviation line:  Draw the line segment from 
Q to R, where R is a point on the tangent, such 
that QR (line of deviation) is parallel to SP (line of 
force).

4.  	The time line:  Draw the line segment from Q to 
T, where T is a point on the radial line SP, such 
that QT (height of “time triangle”) is perpendicu-
lar to SP (base of triangle).

5.  	The force measure:  Measure the shape param-
eters QR, SP, and QT, and calculate the force mea-
sure QR/(SP 3 QT)2.    

6.  	The calculus limit:  Repeat steps two to five for 
several future points Q around P to obtain several 
force measures. Take the limit Q→P of the se-
quence of force measures to find the exact value of 
the force measure at P.7  

Orbital Mechanics Laboratory

In our Orb Lab, students solve the Kepler Problem 
in three steps:  (1) construct an elliptical orbit,  (2) 
measure the force F at several points r on the orbit,  
(3) analyze the variation of F with r to find the law of 
force.

To construct an orbit, a team of about 10 students 
draws a large ellipse. Two tacks are pinned to a board.  
The ends of an inflexible string or thread are attached 
to the pins. Alternatively, a loop of string can be 
wrapped around the tacks. A pen held taut against the 
string traces out an elliptical curve. The length of the 
string determines the length of the major axis of the 
ellipse. The tacks represent the foci of the ellipse. One 
tack represents the Sun. Two different orbits are con-
structed: ellipse a (major axis = 117.7 cm, eccentricity 
=  0.533) and ellipse b (major axis =  95.1 cm, eccen-
tricity =  0.397).

A photograph of an elliptical orbit partitioned into 
orbital arcs is shown in Fig. 5. Dividing the whole 
orbit into small pieces (parabolic arcs) breaks the 
celestial problem into manageable parts—projectile 
motion problems. On each arc, a point P representing 
the position of the planet is marked. The radial line 
connecting the Sun S and each P is drawn. The radial 
distance r = SP is written next to each P.

Each team member gets his or her own orbital 
arc to analyze. Using Newton’s Recipe, each team 
member is responsible for measuring the value of the 
force F acting on the planet at his or her particular 
value of the Sun-planet distance r. The quest of the 
whole team is to find the force law—the continuous 

Fig. 5. The class constructs an elliptical orbit. Each student 
gets a small piece (arc) of the whole ellipse and measures 
the force responsible for the shape of his or her arc.  

   r (m)           F (m-3)
0.324 14.0

0.359 10.0

0.419 8.60

0.460 6.00

0.560 4.00

0.607 3.66

0.625 3.42

0.644 3.46

0.647 2.80

Table II. Values of the force F measured by a team of 
students at nine different radii r along their elliptical 
orbit. The team uncovers a simple pattern in the data:  
F = 1.23/r2.12. 
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function F(r) that gives the values of the force F at all 
points r in the orbit. To find F(r) each student must 
share his or her value of F at one point with the whole 
class. We have students go to the blackboard and enter 
their pair of numbers (r, F ) into a data table.  Such a 
table is replicated in Table II.

Students analyze the class data to find a relation-
ship between F and r. There is no guarantee that a 
simple theoretical function F(r) describes the experi-
mental data. A belief in the simplicity (beauty) of 
nature or being acquainted with the law of gravity 
prompts students to try fitting the data with a power 
law. Using a graphing program, students plot F versus 
r, fit the points with the function F ~ 1/r n, and find 
the best-fit value of the exponent n. An F-versus-r 
graph is displayed in Fig. 6.

The results are quite accurate. Based on measuring 
F at only eight or nine points r along the ellipse, teams 
discovered force laws ranging from F ~ 1/r1.99 to F ~ 
1/r 2.14. By merging their data, teams found the force 
law F ~ 1/r2.06 for ellipse a and F ~ 1/r2.02 for ellipse 
b. Large classes can discover precise laws. Students are 
convinced that inverse-squared forces cause ellipse-
shaped orbits. 

Non-celestial Force Laws: r–5, r–3, r1 
Newton’s Recipe can be applied readily to other 

orbit problems. Although the Kepler problem is the 
relevant problem for celestial orbits (ellipses with Sun 
at focus), solving other orbit problems illustrates the 
power and versatility of the geometric theory. As an 

experimental test of Newton’s theoretical results, we 
have measured the force laws for the three non-celes-
tial orbits listed in Table I (circle, spiral, ellipse with 
Sun at center). Our measured values (-4.92, -2.78, 
+0.93) of the force-law exponents are consistent with 
Newton’s theoretical values (-5, -3, +1).

Conclusion
Physicists are in the business of finding force laws.  

Newton’s Recipe allows students to practice the art 
of discovering force laws for themselves. In the Orb 
Lab, students come face to face with the Kepler prob-
lem and are exposed to Newton’s geometric formula.  
Drawing tangents and measuring deviations epito-
mize Newton’s first and second laws. The experiment 
is low tech (string, tacks, ruler). The physics is basic (d 
= ½at2, F = ma, t  A). The results are powerful (ellip-
tical orbit ➯ 1/r 2 force). As a bonus, students receive 
hands-on lessons in elliptical geometry, infinitesimal 
calculus, and collaborative research (working as a team 
to find a law of nature).
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Fig. 6. Force law discovered by the class based on mea-
suring the force F at 17 points r on the elliptical orbit. 
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be inversely as the solid (SP2 3 QT2)/QR, provided 
that the magnitude of the solid is always taken as that 
which it has ultimately when the points P and Q come 
together.” 

6.  	 What does “close” mean? In theory, the force formula 
is exact only for infinitesimal deviations. In our experi-
ment, we assume that a deviation is “infinitesimal” if 
the length of the deviation QR is less that 10% of the 
Sun-planet distance SP. Given the size of the orbits 
drawn in our class (30 cm < SP < 90 cm), we suggest to 
the students that they choose future points Q around P 
so that the deviations QR are about 4 cm, 3 cm, 2 cm, 
and 1 cm. Measuring smaller distances with a ruler in-
volve larger relative errors.

7.  	 How do you take the “calculus limit?” If you are in the 
calculus regime of infinitesimal deviations (approxi-
mated by QR< 0.1SP) and parabolic arcs, then the val-
ues of the force measures in the force sequence should 
be roughly constant or slowly approaching a limiting 
value. We have the students estimate the limit by simply 
looking at the values, noticing a trend, and performing 
a qualitative extrapolation (or average). 
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