1. **Course**: Course CHEM 315 Analytical Chemistry: Introductory Instrumental Analysis

<table>
<thead>
<tr>
<th>LEC</th>
<th>DAYS</th>
<th>TIME</th>
<th>ROOM</th>
<th>INSTRUCTOR</th>
<th>OFFICE</th>
<th>EMAIL</th>
<th>OFFICE HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>TR</td>
<td>12:30-1:45</td>
<td>Virtual</td>
<td>Dr. J. Gailer</td>
<td>SB405</td>
<td>jgailer@ucalgary.ca</td>
<td>TR: 2:00-3:00 pm</td>
</tr>
</tbody>
</table>

Course website or D2L course name: CHEM 315 L01 - (Winter 2019) - Analy Chem: Intro Instrument Analy
Departmental Office: Room SA 229, Tel: 403-220-5341

2. **Course Description**: Lectures: Principles and practice of instrumental measurements for the quantitative determination of substances. Spectroscopic analysis. Analytical separations; liquid-liquid extraction, solid phase extraction, chromatography. Laboratory: Quantitative analysis of organic and inorganic materials using simple instrumental techniques.

4. **Topics Covered* and Suggested Readings**:

 - **Chapter 4** Statistics, sections 4-7 and 4-8
 - **Chapter 5** Quality Assurance and Calibration Methods
 - **Chapter 28** Sample Preparation
 - **Chapter 18** Fundamentals of Spectrophotometry
 - **Chapter 20** Spectrophotometers
 - **Chapter 21** Atomic Spectrometry
 - **Chapter 22** Mass Spectrometry
 - **Chapter 23** Introduction to Analytical Separations
 - **Chapter 24** Gas Chromatography
 - **Chapter 25** High-Performance Liquid Chromatography
 - **Chapter 26** Chromatographic Methods and Capillary Electrophoresis

* Given time constraints, not all indicated Topics may be covered.

LABORATORY EXPERIMENTS: (8 weeks, 34 hours total experiment time)
- Determination of Aluminum by EDTA titration (2 weeks)
- Spectrophotometric Analysis of Trace Iron
- Copper by Electrogravimetry
- Cyclic Voltammetry of Ferricyanide
- Analgesics by High-Performance Liquid Chromatograph
- Chlorocarbons by Gas Chromatography
- Tartaric Acid in Wine by Ion Chromatography
- Fluoride by Ion-Selective Electrode