COURSE OUTLINE

1. **Course**: CPSC 526, Network Systems Security - Winter 2024
   
   Lecture 01: MWF 09:00 - 09:50 in SA 106
   
   **Instructor**: Dr Pavol Federl
   **Email**: pfederl@ucalgary.ca
   **Phone**: n/a
   **Office**: ICT 742
   **Hours**: Thursday 1-3pm via Zoom (link posted on D2L)

   To account for any necessary transition to remote learning for the current semester, courses with in-person lectures, labs, or tutorials may be shifted to remote delivery for a certain period of time. In addition, adjustments may be made to the modality and format of assessments and deadlines, as well as to other course components and/or requirements, so that all coursework tasks are in line with the necessary and evolving health precautions for all involved (students and staff).

**In Person Delivery Details:**

Lectures and tutorials will be held in-person, and will not be recorded. Students will be expected to attend all lectures and tutorials.

**Course Site:**

D2L: CPSC 526 L01-(Winter 2024)-Network Systems Security

**Note:** Students must use their U of C account for all course correspondence.

**Equity Diversity & Inclusion:**

The University of Calgary is committed to creating an equitable, diverse and inclusive campus, and condemns harm and discrimination of any form. We value all persons regardless of their race, gender, ethnicity, age, LGBTQIA2S+ identity and expression, disability, religion, spirituality, and socioeconomic status. The Faculty of Science strives to extend these values in every aspect of our courses, research, and teachings to better promote academic excellence and foster belonging for all.

2. **Requisites:**

   See section 3.5.C in the Faculty of Science section of the online Calendar.

**Prerequisite(s):**

Computer Science 441.

**Antirequisite(s):**

Credit for Computer Science 526 and either 529 or 626 will not be allowed.

3. **Grading:**

   The University policy on grading and related matters is described in F.1 and F.2 of the online University Calendar.

   In determining the overall grade in the course the following weights will be used:

<table>
<thead>
<tr>
<th>Course Component</th>
<th>Weight</th>
<th>Due Date (duration for exams)</th>
<th>Modality for exams</th>
<th>Location for exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments (5)†</td>
<td>80%</td>
<td>Ongoing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registrar Scheduled Final Exam</td>
<td>20%</td>
<td>Will be available when the final exam schedule is released by the Registrar</td>
<td>in person</td>
<td>Will be available when the final exam schedule is released by the Registrar</td>
</tr>
</tbody>
</table>

† Tentative due dates: Jan 24, Feb 10, Feb 26, Mar 15, Apr 1

Each piece of work (reports, assignments, quizzes, midterm exam(s) or final examination) submitted by the student will be assigned a grade. The student's grade for each component listed above will be combined with the indicated weights to produce an overall percentage for the course, which will be used to determine the course letter grade.

The conversion between a percentage grade and letter grade is as follows.

<table>
<thead>
<tr>
<th>Minimum % Required</th>
<th>A+</th>
<th>A</th>
<th>A-</th>
<th>B+</th>
<th>B</th>
<th>B-</th>
<th>C+</th>
<th>C</th>
<th>C-</th>
<th>D+</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96%</td>
<td>92%</td>
<td>88%</td>
<td>84%</td>
<td>80%</td>
<td>76%</td>
<td>72%</td>
<td>68%</td>
<td>64%</td>
<td>60%</td>
<td>56%</td>
</tr>
</tbody>
</table>
Lectures slides and other support material will be posted on D2L.

This course will have a Registrar Scheduled Final exam that will be delivered in-person and on campus. The Final Examination Schedule will be published by the Registrar’s Office approximately one month after the start of the term. The final exam for this course will be designed to be completed within 1.5 hours.

The University of Calgary offers a flexible grade option. Credit Granted (CG) to support student’s breadth of learning and student wellness. Faculty units may have additional requirements or restrictions for the use of the CG grade at the faculty, degree or program level. To see the full list of Faculty of Science courses where CG is not eligible, please visit the following website: https://science.ucalgary.ca/current-students/undergraduate/program-advising/flexible-grading-option-cg-grade

4. Missed Components Of Term Work:

In the event that a student legitimately fails to submit any online or in-person assessment on time (e.g. due to illness, domestic affliction, etc...), please contact the course coordinator, or the course instructor if this course does not have a coordinator to arrange for a re-adjustment of a submission date, or possible exemption and reweighing of components. Absences not reported within 48 hours will not be accommodated. Students may be asked to provide supporting documentation (Section M.1) for an excused absence, See FAQ.

If an excused absence is approved, options for how the missed assessment is dealt with is at the discretion of the coordinator or course instructor. Some options such as an exemption and pro-rating among the components of the course may not be a viable option based on the design of this course.

5. Scheduled Out-of-Class Activities:

There are no scheduled out-of-class activities for this course.

6. Course Materials:

Recommended Textbook(s):

Paul C. van Oorschot, Computer Security and the Internet Tools and Jewels from Malware to Bitcoin: Springer.

Lectures slides and other support material will be posted on D2L.

In order to successfully engage in their learning experiences at the University of Calgary, students taking online, remote and blended courses are required to have reliable access to the following technology:

- A computer with a supported operating system, as well as the latest security, and malware updates;
- A current and updated web browser;
- Webcam/Camera (built-in or external);
- Microphone and speaker (built-in or external), or headset with microphone;
- Current antivirus and/or firewall software enabled;
- Stable internet connection.

For more information please refer to the UofC Elearning online website.

7. Examination Policy:

Exams are closed-book, with no aids allowed.

Exams must be completed individually, following regulations on academic integrity. Only pens, pencils and erasers are allowed during exams. Electronic devices, including laptops, cell phones, and calculators, must be turned off and stored in bags.

Students should also read the Calendar, Section G, on Examinations.

8. Approved Mandatory And Optional Course Supplemental Fees:

There are no mandatory or optional course supplemental fees for this course.

9. Writing Across The Curriculum Statement:

For all components of the course, in any written work, the quality of the student's writing (language, spelling, grammar, presentation etc.) can be a factor in the evaluation of the work. See also Section E.2 of the University Calendar.
10. Human Studies Statement:

Students will not participate as subjects or researchers in human studies.

See also Section E.5 of the University Calendar.

11. Reappraisal Of Grades:

A student wishing a reappraisal, should first attempt to review the graded work with the Course coordinator/instructor or department offering the course. Students with sufficient academic grounds may request a reappraisal. Non-academic grounds are not relevant for grade reappraisals. Students should be aware that the grade being reappraised may be raised, lowered or remain the same. See Section I.3 of the University Calendar.

- **Term Work**: The student should present their rationale a effectively and as fully as possible to the Course coordinator/instructor within ten business days of either being notified about the mark, or of the item's return to the class. If the student is not satisfied with the outcome, the student shall submit the Reappraisal of Graded Term work form to the department in which the course is offered within 2 business days of receiving the decision from the instructor. The Department will arrange for a reappraisal of the work within the next ten business days. The reappraisal will only be considered if the student provides a detailed rationale that outlines where and for what reason an error is suspected. See sections I.1 and I.2 of the University Calendar.

- **Final Exam**: The student shall submit the request to Enrolment Services. See Section I.3 of the University Calendar.

12. Other Important Information For Students:

- **Mental Health**: The University of Calgary recognizes the pivotal role that student mental health plays in physical health, social connectedness and academic success, and aspires to create a caring and supportive campus community where individuals can freely talk about mental health and receive supports when needed. We encourage you to explore the mental health resources available throughout the university community, such as counselling, self-help resources, peer support or skills-building available through the SU Wellness Centre (Room 370, MacEwan Student Centre, Mental Health Services Website) and the Campus Mental Health Strategy website (Mental Health).

- **SU Wellness Services**: For more information, see their website or call 403-210-9355.

- **Sexual Violence**: The Sexual Violence Support Advocate, Carla Bertsch, can provide confidential support and information regarding sexual violence to all members of the university community. Carla can be reached by email (svsa@ucalgary.ca) or phone at 403-220-2208. The complete University of Calgary policy on sexual violence can be viewed here.

- **Student Ombuds Office**: A safe place for all students of the University of Calgary to discuss student related issues, interpersonal conflict, academic and non-academic concerns, and many other problems.

- **Student Union Information**: SU contact. Email your SU Science Reps: science1@su.ucalgary.ca, science2@su.ucalgary.ca, science3@su.ucalgary.ca.

- **Academic Accommodation Policy**: It is the student’s responsibility to request academic accommodations according to the University policies and procedures listed below. The student accommodation policy can be found at: https://www.ucalgary.ca/legal-services/sites/default/files/teams/1/Policies-Student-Accommodation-Policy.pdf

Students needing an accommodation because of a disability or medical condition should communicate this need to Student Accessibility Services in accordance with the Procedure for Accommodations for Students with Disabilities: https://www.ucalgary.ca/legal-services/sites/default/files/teams/1/Policies-Accommodation-for-Students-with-Disabilities-Procedure.pdf.

Students needing an accommodation in relation to their coursework or to fulfil requirements for a graduate degree, based on a Protected Ground other than Disability, should communicate this need, by filling out the Request for Academic Accommodation Form and sending it to by email preferably 10 business days before the due date of an assessment or scheduled absence.

- **Misconduct**: Academic integrity is the foundation of the development and acquisition of knowledge and is based on values of honesty, trust, responsibility, and respect. We expect members of our community to act with integrity. Research integrity, ethics, and principles of conduct are key to academic integrity. Members of our campus community are required to abide by our institutional Code of Conduct and promote academic integrity in upholding the University of Calgary’s reputation of excellence. Some examples of academic misconduct include but are not limited to: posting course material to online platforms or file sharing without the course instructor’s consent; submitting or presenting work as if it were the student’s own work; submitting or presenting work in one course which has also been submitted in another course without the instructor’s permission; borrowing experimental values from others without the instructor’s approval; falsification/fabrication of experimental values in a report. Please read the following to inform yourself more on academic integrity:
h. **Copyright of Course Materials:** All course materials (including those posted on the course D2L site, a course website, or used in any teaching activity such as (but not limited to) examinations, quizzes, assignments, laboratory manuals, lecture slides or lecture materials and other course notes) are protected by law. These materials are for the sole use of students registered in this course and must not be redistributed. Sharing these materials with anyone else would be a breach of the terms and conditions governing student access to D2L, as well as a violation of the copyright in these materials, and may be pursued as a case of student academic or non-academic misconduct, in addition to any other remedies available at law.

i. **Freedom of Information and Privacy:** This course is conducted in accordance with the Freedom of Information and Protection of Privacy Act (FOIPP). Students should identify themselves on all written work by placing their name on the front page and their ID number on each subsequent page. For more information, see Legal Services website.

j. **Surveys:** At the University of Calgary, feedback through the Universal Student Ratings of Instruction (USRI) survey and the Faculty of Science Teaching Feedback form provides valuable information to help with evaluating instruction, enhancing learning and teaching, and selecting courses. Your responses make a difference - please participate in these surveys.

**Course Outcomes:**

- By the end of the course, students should demonstrate facility with the task of probing and monitoring a network to discover its topology and the set of services that hosts provide or advertise; this learning outcome is the basis of professional activities like security auditing and penetration testing.

- Students should be able to demonstrate professional judgement by listing common applied cryptography pitfalls, protocol design pitfalls, and common “snake oil” techniques; students should be able to explain to another student the impact on trustworthiness that each of these pitfalls has; students should demonstrate this capability by examining source code implementations that use applied cryptography like SSL libraries and observing the (possibly inadequate) use of file hashes and signatures on open-source software distribution archives.

- Students should demonstrate the ability to use standard message encryption and integrity protection protocols and standards; for example, students should be capable of sending and receiving encrypted email and describing the usability challenges of both these standards and the duties involved in key management for various services like PGP, VPN, SSL, and SSH; importantly, students should be capable of explaining the different security guarantees that each such approach provides compared to the others.

- By the end of the course, students should be capable of using common network monitoring tools (e.g., tcpdump, Wireshark) to capture a significant amount of real network traffic and analyze the resulting trace; the students should be capable of mentally imposing structure on this opaque data artifact and demonstrate this ability by identifying suspicious packets and flows (i.e., collections of packets); students should also be able to explain the context and purpose of an arbitrary packet in such a trace after examining its fields and its relationship to other packets in the trace.

- By the end of the course, students should be able to use common packet-crafting frameworks to generate arbitrary network messages and craft packets or sequences of packets that express common layer 2 and layer 3 network attacks (e.g., ARP spoofing, ARP poisoning, DHCP spoofing, IP address spoofing); this ability demonstrates knowledge of the “deception surface” and why standard networking protocols cannot be trusted to provide security.

- By the end of the course, the student should be able to examine and analyze the steps of security protocol descriptions and identify common mistakes and weaknesses; they should demonstrate this knowledge partially by referring to the history of the development of public key cryptography, block ciphers, random number generation, and hashing mechanisms; they should be able to name the state-of-the-art algorithms and standards to use for each of these purposes.

- At the end of the course, the student should be able to enumerate and explain the semantics of each step of common authentication and network security protocols; the student should be able to identify whether an arbitrary set of protocol messages expresses one of these common protocols; the student should be able to articulate this analysis either in technical prose or with reference to protocol analysis frameworks known in the research literature.