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ABSTRACT

Despite their great popularity, the conventional Divisia productivity indexes all ignore
undesirable outputs. The purpose of this study is to �ll in this gap by proposing a primal
Divisia-type productivity index that is valid in the presence of undesirable outputs. The
new productivity index is derived by total di¤erentiation of the directional output distance
function with respect to a time trend and referred to as the Divisia�Luenberger productiv-
ity index. We also empirically compare the Divisia�Luenberger productivity index and a
representative of the conventional Divisia productivity indexes � the radial-output-distance-
function-based Feng and Serletis (2010) productivity index � using aggregate data on 15
OECD countries over the period 1981�2000. Our empirical results show that failure to take
into account undesirable outputs not only leads to misleading rankings of countries both in
terms of productivity growth and in terms of technological change, but also results in wrong
conclusions concerning e¢ ciency change.

JEL classi�cation: D24; C43; C51; O47.
Keywords: Directional output distance function; Divisia�Luenberger productivity index;

Undesirable outputs.
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1 Introduction

Divisia-type productivity indexes have long enjoyed great popularity since Solow (1957) pro-
posed his single-output dual Divisia productivity index. Jorgenson and Griliches (1967)
generalized this index to a multiple-output framework, where productivity growth is calcu-
lated as the observed revenue-share-weighted output growth minus the observed cost-share-
weighted input growth. Noting the restrictiveness of the assumptions of price/marginal cost
proportionality and constant returns to scale underlying the Solow (1957) and Jorgenson
and Griliches (1967) indexes, Caves and Christensen (1980) replaced the observed revenue
shares with cost elasticities; Denny et al. (1981) and Fuss (1994) with cost-elasticity shares;
and Diewert and Fox (2008) with markup-adjusted revenue shares (marginal revenue shares).
The three resulting indexes are thus appropriate in the presence of imperfect competition,
which is widely regarded to be an important feature of the economy. More recently, Feng
and Serletis (2010), noting that price information is missing or distorted in many situations,
derived a radial-output-distance-function-based primal Divisia productivity index. This in-
dex is dual to all the aforementioned dual Divisia indexes under di¤erent market structures,
possesses certain desirable axiomatic properties, and does not require price information.
Despite the popularity of the aforementioned Divisia-type productivity indexes, a fea-

ture they all share is that they ignore undesirable (bad) outputs. In the case of the dual
Divisia productivity indexes [the Solow (1957), Jorgenson and Griliches (1967), Caves and
Christensen (1980), Denny et al. (1981), Fuss (1994), and Diewert and Fox (2008) indexes],
a major reason for their incapability to deal with undesirable outputs is that the prices of
undesirable outputs, needed for the construction of these indexes, are missing or distorted in
most situations. In the case of the Feng and Serletis (2010) productivity index, the reason
is that the radial output distance function, on which this index is based, allows only for pro-
portional increases or contractions in outputs and thus is not suitable for situations where
both expansions of desirable (good) outputs and reductions of undesirable outputs are de-
sired. The incapability of these indexes to deal with undesirable outputs is not satisfactory
in many situations. For example, in the context of global e¤orts to reduce greenhouse gas
emissions, a desirable economic growth pattern requires both increases in desirable outputs
(e.g., GDP) and reductions in CO2 emissions. In such situations, the application of the
aforementioned conventional indexes will lead to biased estimates of productivity growth.
Noting the restrictiveness of the aforementioned productivity indexes, we propose in

this paper a new Divisia-type productivity index based on the directional output distance
function. A major advantage of the directional output distance function is that it can si-
multaneously expand desirable outputs and contract undesirable outputs along a path that
varies according to the direction vector adopted. Furthermore, it completely generalizes
the radial Shephard input and output distance functions, providing an adequate tool to
approach economic and environmental performance issues in an integrated fashion. An-
other advantage of this function is that, like the radial output distance function, it requires
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quantity information only and thus is suitable for modeling undesirable outputs, whose price
information is usually missing.
In deriving the primal Divisia productivity index, we follow Solow (1957) and di¤erentiate

a transformation function (in our case, a directional output distance function) totally with
respect to time. This di¤erentiation yields an equality. On one side of the equality is
a directional-output-distance-function-based productivity index, which we refer to as the
Divisia�Luenberger productivity index due to the fact that the directional output distance
function is a variation of Luenberger�s (1992) shortage function. On the other side of the
equality are two terms: a directional-output-distance-function-based technological change
term plus a directional-output-distance-function-based e¢ ciency change term. This equality
constitutes our key relation for the following two reasons. First, the Divisia-Luenberger
productivity index inherits the properties of the directional output distance function and
allows for simultaneous expansions of good outputs and contractions of bad outputs and thus
is valid for situations where bad outputs are present. Second, it allows us to decompose
the Divisia-Luenberger productivity index into two terms: the directional-output-distance-
function-based technological change term and the directional-output-distance-function-based
e¢ ciency change term. This decomposition is consistent with the tradition of Färe et al.
(1994), who decompose the radial-output-distance-function-based Malmquist productivity
index into a technological change component and an e¢ ciency change component.
In addition to proposing the new Divisia-type productivity index, we are also interested

in empirically examining the e¤ects of failure to take into account bad outputs when they
are present. This involves two steps: �rst, choosing a representative from the aforemen-
tioned conventional Divisia productivity indexes so that we can empirically compare this
representative index and the Divisia�Luenberger productivity index; second, parameteriz-
ing and estimating the economic functions on which the conventional representative index
and the Divisia�Luenberger productivity index are based. For the �rst step, we choose
the Feng and Serletis (2010) productivity index as the representative of the aforementioned
conventional Divisia productivity indexes, because this index is dual to all the dual Divisia
productivity indexes mentioned above. Speci�cally, as shown by Feng and Serletis (2010), it
is dual to the Jorgenson and Griliches (1967) productivity index when both the output and
input markets are competitive; dual to the Diewert and Fox (2008) productivity index when
market power is limited to output markets; dual to the Denny et al. (1981) and Fuss (1994)
productivity index when market power is limited to output markets and constant returns
to scale is present; and also dual to a markup-and-markdown adjusted Divisia productivity
index when market power is present in both output and input markets. The generality
of the Feng and Serletis (2010) productivity index makes it an ideal representative of the
conventional Divisia-type productivity indexes.
Regarding the second step, for the case of the Divisia�Luenberger productivity index,

a quadratic functional form is chosen for the directional output distance function since it
is easy to impose the translation property with this functional form. See, for example,
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Chambers (2002) and Färe et al. (2005). For the case of the conventional Feng and Serletis
(2010) productivity index, a translog functional form is chosen for the radial output distance
function since it is easy to impose the linear homogeneity property with this functional
form. See, for example, O�Donnell and Coelli (2005). In estimating the two parametric
functions, we follow Barnett and Lee (1985), Barnett et al. (1991), and Barnett (2002) and
stress the importance of maintained regularity conditions (curvature and monotonicity) when
modeling tastes and technology. To quote Barnett (2002, p. 199), �without satisfaction of
both curvature and monotonicity, the second-order conditions for optimizing behavior fail,
and duality theory fails.� Speci�cally, we explicitly produce the monotonicity and curvature
conditions of the directional output distance functions and those of the radial output distance
function. These conditions, by putting restrictions on the weights of the Feng and Serletis
(2010) productivity index and the Divisia�Luenberger productivity index, guarantee that
the two indexes are economically meaningful. In estimating the two parametric functions
on which the two indexes are based, we employ a Bayesian approach. This approach has the
advantage of easily incorporating the maintained regularity conditions into the estimation
of the directional output distance function and the radial output distance function and thus
guaranteeing the coherence between economic theory and econometric techniques.
We �nally apply the above framework to the aggregate data on 15 OECD countries over

the period 1981�2000. Our empirical results show that failure to take into account undesir-
able outputs not only leads to misleading rankings of countries both in terms of productivity
growth and in terms of technological change, but also results in wrong conclusions concerning
e¢ ciency change.
The paper is organized as follows. In Section 2, we derive the directional-output-

distance-function-based Divisia�Luenberger productivity index and show that it can be de-
composed into a directional-output-distance-function-based technological change term plus a
directional-output-distance-function-based e¢ ciency change term. Section 3 discusses data
issues. Section 4 discusses the empirical speci�cation of the radial output distance function
and the directional output distance function. In Section 5 we discuss the Bayesian stochastic
frontier method of estimation while in Section 6 we present and discuss the empirical results.
The last section summarizes and concludes the paper.

2 Theory

Consider a production unit that uses N inputs to produce M desirable (good) outputs and
P undesirable (bad) outputs. We assume that these inputs and outputs are continuously
di¤erentiable functions of time and denote them respectively by x(t)2RN+ , y(t)2RM+ , and
b(t)2RP+, where t represents a time trend. If at any period t there exists a well-de�ned output
set S (t), then the distance of the actual period t input-output vector z(t) � (y(t); b(t);x(t))
to the frontier of the output set is given by the value of the directional output distance
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function, ~Do (z(t); t; g), where g �
�
gy;�gb

�
with g 2 RM+ � RP+ is a directional vector.

Formally, ~Do (z(t); t; g) can be de�ned as in Färe et al. (2005) :

~Do (z(t); t; g) = max
�
� : (y(t);b(t)) +

�
�gy;��gb

�
2 S (t)

	
:

This functions is nonnegative, non-increasing in good outputs, and non-decreasing in inputs
and bad outputs. In addition, it satis�es the following translation property

~Do

�
y(t) + �gy; b(t)� �gb;x(t); t; g

�
= ~Do (y(t); b(t);x(t); t; g)� � (1)

where � is an arbitrary scaling factor. This property says that if y is expanded by �gy and
b is contracted by �gb, then the value of the resulting directional output distance function
will decrease by �.
As is well known, ~Do (z(t); t; g) provides an additive measure of the e¢ ciency of the

production unit in the direction of g, whereby an increase in the value of ~Do (z(t); t; g)
means a decrease in e¢ ciency. Thus in the language of continuous time, e¢ ciency change
can be measured by �d ~Do (z(t); t; g) =dt. By de�nition this total di¤erential can be written
as

d ~Do (z(t); t; g)

dt
=

M+P+NX
i=1

@ ~Do (z(t); t; g)

@ ln zi

d ln zi (t)

dt
+
@ ~Do (z(t); t; g)

@t
. (2)

After dividing both sides of (2) by 1 + ~Do (z(t); t; g), it is immediately clear that (2) can be
rewritten as1

�
M+P+NX
i=1

@ ln
h
1 + ~Do (z(t); t; g)

i
@ ln zi

d ln zi (t)

dt

=
@ ln

h
1 + ~Do (z(t); t; g)

i
@t

�
d ln

h
1 + ~Do (z(t); t; g)

i
dt

. (3)

The monotonicity conditions of the directional output distance function imply the fol-
lowing restrictions on the weights of d ln zi (t) =dt: �@ ln

h
1 + ~Do (z(t); t; g)

i
=@ ln ym � 0,

�@ ln
h
1 + ~Do (z(t); t; g)

i
=@ ln bp � 0, and �@ ln

h
1 + ~Do (z(t); t; g)

i
=@ lnxn � 0. With

these restrictions, the left hand side of (3) has the form of a Solow-type index and is referred
to in this paper as �the Divisia-Luenberger productivity index.� For notational simplicity,
we denote the Divisia-Luenberger productivity index by PGL, where the superscript �L�is
used to indicate that this index is based on Luenberger�s (1992) directional output distance

1Note that on the frontier where ~Do (z(t); t; g) = 0, 1 + ~Do (z(t); t; g) = 1. Thus dividing both sides of
(2) by 1 + ~Do (z(t); t; g) will not change (2) on the frontier.
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function. The �rst term on the right hand of (3) measures technological change, where
technological progress (regress) is said to occur when there is an outward (inward) shift of
the directional output distance frontier. The second term (including the negative sign) on
the right-hand side of (3), as we have already seen, measures e¢ ciency change (in percent-
age form). For simplicity, we denote the �rst term on the right side of (3) by TCL and the
second term (including the minus sign) on the right side of (3) by ECL.
Expression (3) constitutes our key relation for the following two reasons. First, the

Divisia-Luenberger productivity index on the left hand side of (3) allows for simultaneous
expansions of good outputs and contractions of bad outputs. This can be clearly seen by
expanding this index as follows

PGL = �
MX
m=1

@ ln
h
1 + ~Do (z(t); t; g)

i
@ ln ym

d ln ym (t)

dt

�
PX
p=1

@ ln
h
1 + ~Do (z(t); t; g)

i
@ ln bp

d ln bp (t)

dt
�

NX
n=1

@ ln
h
1 + ~Do (z(t); t; g)

i
@ lnxn

d lnxn (t)

dt
. (4)

The �rst term on the right hand side of (4) shows that an increase in a good output will

lead to an increase in the value of PGL since �@ ln
h
1 + ~Do (z(t); t; g)

i
=@ ln ym � 0. The

second term on the right hand side of (4) shows that a reduction in a bad output will

also lead to an increase in the value of PGL since �@ ln
h
1 + ~Do (z(t); t; g)

i
=@ ln bp � 0.

Thus the Divisia-Luenberger productivity index credits both increases in good outputs and
reductions in bad outputs, and thus is suitable for situations where bad outputs are present.
In contrast, the conventional Feng and Serletis (2010) productivity index allows only for
proportional increases or contractions in outputs and thus is not suitable for situations
where both expansions of desirable (good) outputs and reductions of undesirable outputs
are desired. Moreover, the Divisia-Luenberger productivity index is also superior to the
conventional dual Divisia productivity indexes in that it does not require the prices of bad
outputs, which are missing or distorted in most situations.
Second, (3) provide a meaningful way to decompose the Divisia-Luenberger productivity

index. The equality between PGL and
�
TCL + ECL

�
means that the Divisia-Luenberger

productivity index can be decomposed into two components: TCL and ECL, with the former
capturing the shift in the frontier and the latter capturing catch-up e¤ects (i.e., the movement
towards or away from the frontier). This decomposition is in line with the pioneering work
by Chambers et al. (1996), who decompose the Luenberger productivity indicator into a
technological change component and an e¢ ciency change component.
Empirical application of (3) requires that PGL, TCL, and ECL be approximated by

discrete-time approximations. Continuous-time Divisia indexes are usually approximated
using discrete-time Törnqvist formulae. See, for example, Star and Hall (1976), Trivedi

7



(1981), Balk (2005), and Diewert and Fox (2008). Following this practice, we approximate
the continuous-time Divisia-Luenberger productivity index by the following discrete-time
Törnqvist-type expression between periods t and t+ 1

PGL (t+ 1; t) � �
M+P+NX
i=1

1

2

8<:@ ln
h
1 + ~Do (z(t); t; g)

i
@ ln zi

+
@ ln

h
1 + ~Do (z(t+ 1); t+ 1; g)

i
@ ln zi

9=; ln
�
zi (t+ 1)

zi (t)

�
. (5)

Also, the technological change term at the right-hand side of (3) can be approximated by

TCL (t+ 1; t) � 1

2

(
ln

"
1 + ~Do (z(t); t+ 1; g)

1 + ~Do (z(t); t; g)

#
+ ln

"
1 + ~Do (z(t+ 1); t+ 1; g)

1 + ~Do (z(t+ 1); t; g)

#)
(6)

and the e¢ ciency change term by

ECL (t+ 1; t) � � ln
"
1 + ~Do (z(t+ 1); t+ 1; g)

1 + ~Do (z(t); t; g)

#
. (7)

Combining (6) and (7), we obtain

TCL (t+ 1; t) + ECL (t+ 1; t)

� 1

2

(
ln

"
1 + ~Do (z(t); t; g)

1 + ~Do (z(t+ 1); t; g)

#
+ ln

"
1 + ~Do (z(t); t+ 1; g)

1 + ~Do (z(t+ 1); t+ 1; g)

#)
; (8)

or

exp
�
TCL (t+ 1; t) + ECL (t+ 1; t)

	
�
("

1 + ~Do (z(t); t; g)

1 + ~Do (z(t+ 1); t; g)

#"
1 + ~Do (z(t); t+ 1; g)

1 + ~Do (z(t+ 1); t+ 1; g)

#)1=2
(9)

the right-hand side of which is a Malmquist-type index, resembling the Malmquist�Luenberger
productivity index proposed by Chung et al. (1997). The only di¤erence is that the direc-
tional vector is assumed to be constant in (9), whereas it is assumed to be equal to y(t) in
the Malmquist�Luenberger productivity index.
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If there are no bad outputs, the corresponding part of the right-hand side of (4) will
vanish and the Divisia�Luenberger productivity index will reduce to

PGL = �
MX
m=1

@ ln
h
1 + ~Do

�
y(t);x(t); t; gy

�i
@ ln ym

d ln ym (t)

dt

�
NX
n=1

@ ln
h
1 + ~Do

�
y(t);x(t); t; gy

�i
@ lnxn

d lnxn (t)

dt
. (10)

It should be noted here that it is impossible to relate (10) to the radial-output-distance-
function-based Feng and Serletis (2010) productivity index, through the well-known equality
[see Färe and Grosskopf (2000) and Balk et al. (2008)]

Do(y(t);x(t); t) � 1=
�
1 +

�!
D o (y(t);x(t); t;y (t))

�
;

where Do(y(t);x(t); t) is the radial output distance function. This is because this equality
holds only when the direction vector of the directional output distance function is equal
to y(t). However, the directional vector in the Divisia�Luenberger productivity index is
constant.
In these situation, e¢ ciency of the actual input-output vector (y (t) ;x (t)) can alter-

natively be measured by Do(y(t);x(t); t), the radial distance to the frontier of the period
t technology. As is well known, an increase in the value of Do(y(t);x(t); t) means an in-
crease in e¢ ciency, implying that e¢ ciency change can be measured by dDo(y(t);x(t); t)=dt
in continuous time. Evaluating this total di¤erential yields

dDo(y(t);x(t); t)

dt
=

MX
m=1

@Do(y(t);x(t); t)

@ ln ym

d ln ym (t)

dt

+
NX
n=1

@Do(y(t);x(t); t)

@ lnxn

d lnxn (t)

dt
+
@Do(y(t);x(t); t)

@t
: (11)

Dividing both sides of (11) by Do(y(t);x(t); t) and rearranging gives

MX
m=1

@ lnDo(y(t);x(t); t)

@ ln ym

d ln ym (t)

dt
+

NX
n=1

@ lnDo(y(t);x(t); t)

@ lnxn

d lnxn (t)

dt

= �@ lnDo(y(t);x(t); t)

@t
+
d lnDo(y(t);x(t); t)

dt
. (12)

The linear homogeneity property and monotonicity conditions of the radial output distance
function (i.e., non-decreasing in good outputs and non-increasing in inputs) imply the follow-
ing restrictions on the weights of d ln ym (t) =dt and d lnxn (t) =dt:

PM
m=1 @ lnDo(y(t);x(t); t)-
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=@ ln ym = 1, @ lnDo(y(t);x(t); t)=@ ln ym � 0, and @ lnDo(y(t);x(t); t)=@ lnxn � 0. With
these restrictions, the left hand side of (12) has the standard form of a Divisia-type index.
This index is in fact the Feng and Serletis (2010) productivity index. With regards to the
two terms on the right hand of (12), the �rst term is technological change, where technolog-
ical progress (regress) is said to occur when there is an outward (inward) shift of the radial
output distance frontier. The second term measures e¢ ciency change. For notational
simplicity, we denote the left side term of (12) by PGS, where the superscript �S�is used
to indicate that the index is based on Shephard�s (1970) radial output distance function.
Further, we denote the �rst term (including the minus sign) on the right hand side of (12)
by TCS, and the second term on the right hand side of (12) by ECS. The equality between
PGS and

�
TCS + ECS

�
means that the Feng and Serletis (2010) productivity index can also

be decomposed into a technological change component and an e¢ ciency change component.
PGS, ECS, and TCS in (12) can be approximated in the same manner as that for PGL,

ECL, and TCL, yielding the following expressions

PGS (t+ 1; t)

�
MX
m=1

1

2

�
@ lnDo(y(t);x(t); t)

@ ln ym
+
@ lnDo(y(t+ 1);x(t+ 1); t+ 1)

@ ln ym

�
ln

�
ym (t+ 1)

ym (t)

�

+
NX
n=1

1

2

�
@ lnDo(y(t);x(t); t)

@ lnxn
+
@ lnDo(y(t+ 1);x(t+ 1); t+ 1)

@ lnxn

�
ln

�
xn (t+ 1)

xn (t)

�

TCS (t+ 1; t) � �1
2

�
ln

�
Do(y(t);x(t); t+ 1)

Do(y(t);x(t); t)

�
+ ln

�
Do(y(t+ 1);x(t+ 1); t+ 1)

Do(y(t+ 1);x(t+ 1); t)

��
and

ECS (t+ 1; t) � ln
�
Do(y(t+ 1);x(t+ 1); t+ 1)

Do(y(t);x(t); t)

�
.

Alternatively, the equality between
�
TCS (t+ 1; t) + ECS (t+ 1; t)

�
and PGS (t+ 1; t) can

be shown by assuming that the radial output distance function takes a translog functional
form and applying the �Translog� Identity [see Balk (1998, p. 225)] to the radial-output-
distance-function-based Malmquist productivity index. For an excellent and detailed dis-
cussion, see Balk (1998, p. 97-111).
With the Divisia�Luenberger productivity index, which allows for simultaneous expan-

sions of good outputs and contractions of bad outputs, and the Feng and Serletis (2010)
productivity index, which is valid only when good outputs are present, we can empirically
examine the e¤ects of failure to take into account bad outputs when they are present. This
is what we will do next.
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3 Data

The annual data used in this study are obtained from the Penn World Tables (6.2) and the
U.S. Energy Information Administration. The sample covers the period 1981-2000. The
OECD countries examined are: Australia, Canada, Denmark, Finland, France, Germany,
Ireland, Italy, Japan, Netherlands, Norway, Spain, Sweden, the United Kingdom, and the
United States. This gives a total of 15 countries (K = 15) observed over 20 years (T = 20).
For the speci�cation of outputs and inputs, two outputs (one good output and one bad

output) and three inputs are included. The good output is gross domestic product (GDP) (y,
measured in billions of dollars), the bad output is carbon dioxide (CO2) emissions from the
combustion of energy (b, measured in billion metric tons). The three inputs are capital stock
(x1, measured in billions of dollars), employment (x2, measured in thousands of workers),
and energy (x3, measured in quadrillion BTU). GDP and the capital stock are measured in
1981 international prices. Employment is calculated from real GDP per worker and capital is
obtained from the capital stock per worker. CO2 emissions account for only the combustion
of energy.
Our treatment of CO2 as an output instead of an input is consistent with the Ayres

and Kneese (1969) materials-balance principle, which states that the weight of all material
outputs of any production process equals the weight of all material inputs. In our particular
case, CO2 emissions come from the combustion of energy (one of the three inputs speci�ed
in this paper; see the de�nition of our CO2 emissions in the previous paragraph) and oxygen
(a free input). Thus for the materials-balance principle to hold in our case, CO2 emissions
should be treated as an output rather than an input. For a rigorous proof as to why
pollutants cannot be modelled as inputs, see Pethig (2006) and Martin (1986). In addition,
it is worth mentioning that there is a long tradition in the literature of productivity and
e¢ ciency of treating gas emissions (e.g., CO2) as outputs. Studies, which treat CO2 or
other gas emissions as outputs, include but are not limited to, Pittman (1983), Gollop and
Swinand (2001), Fernandez et al. (2002), Jeon and Sickles (2004), and Färe et al. (2005).

4 Model Speci�cation

To obtain the estimates of the Feng and Serletis (2010) productivity index and those of the
Divisia�Luenberger productivity index for the sample countries, we need to parameterize the
two economic functions � the radial output distance function and the directional output
distance function � on which the two indexes are based.
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4.1 The Translog Radial Output Distance Function

We start with the radial output distance function, where the bad output cannot be explicitly
accounted for and thus is ignored. We choose to parameterize it as a translog function,
since the parameters of this functional form can be easily restricted to satisfy the linear
homogeneity property. See, for example, O�Donnell and Coelli (2005) and Färe et al.
(2008). The translog radial output distance function, de�ned overM = 1 good outputs and
N = 3 inputs, can be written as

lnDo (y;x; t) = a0 + a1 ln y +
1

2
a11 (ln y)

2

+
3X
n=1

bn lnxn +
1

2

3X
n=1

3X
j=1

bnj lnxn lnxj + �� t+
1

2
��� t

2

+
3X
n=1

gn1 lnxn ln y + ��1t ln y +
3X
n=1

e��nt lnxn (13)

where t denotes a time trend. Symmetry requires bnj = bjn. The restrictions required for
homogeneity of degree one in outputs are

a1 = 1; a11 = 0; gn1 = 0; ��1 = 0. (14)

The translog radial output distance function in (13) cannot be directly estimated since
Do (y;x; t) is not observable. To deal with this problem we will exploit the linear homo-
geneity property of the radial output distance function and transform (13) into an estimable
regression equation in the form of a standard stochastic frontier. See, for example, Lovell
et al. (1994) and O�Donnell and Coelli (2005). Speci�cally, normalizing (13) by the output
gives

lnDo

�
y

y
;x; t

�
= ln

�
1

y
Do (y;x; t)

�
= � ln y + ln [Do (y;x; t)]

= � ln y � �, (15)

where the �rst equality is obtained by the linear homogeneity of Do (y;x; t) in outputs and
� � � lnDo (y;x; t) � 0. It is worth noting that, by de�nition, � is a measure of technical
ine¢ ciency, which is unobservable and non-negative. Rearranging (15) yields

ln y = � lnDo (1;x; t)� �. (16)

Assuming that � follows a non-negative distribution and adding an independently and iden-
tically normally distributed error term, ", (16) can be further written as

ln y = � lnDo (1;x; t)� �+ ". (17)
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The above procedure thus transforms (13) into (17), an estimable equation in the form
of a standard stochastic frontier model with two error terms, with one (i.e., ") capturing
statistical noise and the other (i.e., �) representing ine¢ ciency.
By expanding the �rst term on the right hand side of (17), the stochastic radial output

distance frontier model in (17) can be written more explicitly as

ln y = �a0�
3X
n=1

bn lnxn�
1

2

3X
n=1

3X
j=1

bnj lnxn lnxj��� t�
1

2
��� t

2�
3X
n=1

e��nt lnxn� �+". (18)
When estimating (18) below, monotonicity and curvature conditions of the radial output

distance function will be imposed if they are not satis�ed, so that the empirical results
obtained are consistent with microeconomic theory. Speci�cally, monotonicity requires that
Do (y;x; t) be non-decreasing in good outputs and non-increasing in inputs. In our particular
case where there is only one single output, @ lnDo (y;x; t) =@ ln y = 1 > 0 by construction
(i.e. by the linear homogeneity property). Thus, monotonicity only requires that Do (y;x; t)
be non-increasing in inputs. Formally, for n = 1; 2; 3,

@ lnDo (y;x; t) =@ lnxn = bn +
NX
j=1

bnj lnxj + gn1 ln y + e��nt � 0. (19)

As for curvature, it requires that Do (y;x; t) be quasi-convex in inputs and convex in
outputs [see O�Donnell and Coelli (2005)]. In our particular case, the Hessian matrix
of the radial output distance function with respect to output is equal to zero [i.e., F
= [@2Do (y;x; t) =@

2y] = [a11] = [0] by (14)], implying that convexity of Do (y;x; t) in
outputs is always satis�ed. For Do (y;x; t) to be quasi-convex in inputs it is su¢ cient that
all the principal minors of the bordered Hessian matrix of the radial output distance function
with respect to inputs are negative. For more details, see O�Donnell and Coelli (2005).

4.2 The Quadratic Directional Output Distance Function

We now turn to the parameterization of the directional output distance function. This
involves choosing a functional form for ~Do (z (t) ; t; g) and specifying the directional vector,
g. For the former, we choose a quadratic functional form since the parameters of this
functional form can be easily restricted to satisfy the translation property in (1). See
Chambers (2002) and Färe et al. (2005, 2008). For the latter, we follow Färe et al. (2005)
and set g =

�
gy;�gb

�
= (1;�1) for the following two reasons. First, a negative value

(i.e. �1) for �gb enables the Divisia�Luenberger productivity index to credit reductions in
CO2 emissions. Second, it will facilitate the imposition of the translation property on the
quadratic function. The directional output distance function, de�ned over M = 1 good
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outputs, P = 1 bad output, and N = 3 inputs, can thus be written as

~Do (z; t; 1;�1) = ~Do (y; b;x; t; 1;�1)

= �0 + �1y + �1b+

3X
n=1


nxn + �� t

+
1

2
�11y

2 +
1

2
�11b

2 +
1

2

3X
n=1

3X
n0=1


nn0xnxn0 +
1

2
��� t

2

+
3X
n=1

�n1xny +
3X
n=1

'n1xnb+ �11yb+ ��1ty + ��1tb+
3X
n=1


�ntxn; (20)

where symmetry is imposed by setting 
nn0 = 
n0n. The translation property will be satis�ed
if

�1 � �1 = �1; �11 = �11 = �11; �n1 = 'n1 (n = 1; 2; 3) ; and ��1 = ��1. (21)

Restrictions in (21) are obtained by substituting g =
�
gy;�gb

�
= (1;�1) into the translation

property in (1) � see the Appendix for proof. Färe et al. (2005) use the same directional
output distance function as the one in (20) except those terms containing the time trend.
Correspondingly, they impose the same equality restrictions as those in (21) except ��1 = ��1.
Like the radial output distance function, the directional output distance function in (20)

cannot be estimated directly since ~Do (z (t) ; t; g) is not observable. In what follows we
will exploit the translation property to transform (20) into an estimable regression equation
in the form of a standard stochastic frontier. Speci�cally, in our particular case where g
=
�
gy;�gb

�
= (1;�1), the translation property in (1) can be rewritten as follows

~Do (y + �; b� �;x; 1;�1) = ~Do (y; b;x; 1;�1)� �. (22)

Since � is arbitrary, for empirical implementation we choose to be observation speci�c and
set � equal to �y. Thus (22) can be written as

~Do (0; b+ y;x; 1;�1) = ~Do (y; b;x; 1;�1) + y;

which, after rearranging, becomes

y = ~Do (0; b+ y;x; 1;�1)� ~Do (y; b;x; 1;�1)
= ~Do (0; b+ y;x; 1;�1)� �; (23)

where � � ~Do (y; b;x; 1;�1) � 0, representing environmental and technical ine¢ ciency.
When an iid normal error term, �, is added, (23) can be further written as

y = ~Do (0; b+ y;x; 1;�1)� � + �. (24)
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Thus, by employing the translation property the above procedure transforms (20) into (24),
an estimable equation in the form of a standard stochastic frontier model with two error
terms, with one (i.e., �) capturing statistical noise and the other (i.e., �) representing ine¢ -
ciency. The logic here is similar to that used in transforming the inestimable radial output
distance function into an estimable stochastic frontier model. The di¤erence is that in the
previous case the linear homogeneity property of the output distance function is exploited,
whereas in this case the translation property of the directional output distance function is
employed.
Since ~Do (0; b+ y;x; 1;�1) takes a quadratic functional form, (24) can be explicitly writ-

ten as

y = �0 + �1~b+
3X
n=1


nxn + �� t+
1

2
�11~b

2 +
1

2

3X
n=1

3X
n0=1


nn0xnxn0

+
1

2
��� t

2 +
3X
n=1

'n1xn~b+ ��1t~b+
3X
n=1


�ntxn � � + �, (25)

where ~b = b+ y.
When estimating (25) below, monotonicity and curvature conditions of the directional

output distance function will be imposed if they are not satis�ed. Monotonicity in this case
requires that ~Do (z (t) ; t; g) be non-increasing in good outputs and non-decreasing in inputs
and bad outputs. Formally, it requires

@ ~Do (z(t); t; g) =@y = �1 + �11y +
3X
n=1

�n1xn + �11b+ ��1t � 0

@ ~Do (z(t); t; g) =@b = �1 + �11b+
3X
n=1

'n1xn + �11y + ��1t � 0

@ ~Do (z(t); t; g) =@xn = 
n +

3X
n0=1


nn0xn0 + �n1y + 'n1b+ 
�nt � 0.

Curvature requires ~Do (z(t); t; g) be jointly concave in desirable and undesirable outputs
� see Chambers (2002, p. 753) and Färe et al. (2005, p. 475). Formally, let w
= [y; b] denote the output vector and H denote the Hessian matrix of the directional out-
put distance function with respect to outputs, i.e., H = [h11; h12;h21; h22] where hij =
@2 ~Do (z(t); t; g) =@wi@wj (i; j = 1; 2). Concavity in good and bad outputs will then be
ensured if and only if all the principal minors of H that are of odd-numbered order are
nonpositive and all the principal minors that are of even-numbered order are nonnegative �
see Morey (1986).
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5 Bayesian Estimation

Each of the two stochastic frontier models, (18) and (25), can be rewritten more compactly,
in a panel data framework, as follows

qit = s
0
it� � uit + vit (26)

where i = 1; � � �; K indicates countries and t = 1; � � �; T indicates time. For the case of
(18), qit = ln yit; sit is a vector of all the relevant variables on the right hand side of (18); �
is the corresponding vector of coe¢ cients (including the intercept); uit = �it; and vit = "it.
For the case of (25), qit = yit; sit is a vector of all the relevant variables on the right hand
side of (25); � is the corresponding vector of coe¢ cients (including the intercept); uit = �it;
and vit = �it. Thus in both cases, uit represents ine¢ ciency and vit represents statistical
noise, formally, vit � iidN(0; �2). Further, following the common practice in the Bayesian
stochastic frontier literature, we assume that the two error terms in (26) are independent of
each other and also of s. For notational simplicity, in what follows we let q, u, and v denote
the matrix forms of qit, uit, and vit, respectively. Formally, q = (q11; :::; q1T ; :::; qK1; :::; qKT )

0,
u = (u11; :::; u1T ; :::; uK1; :::; uKT )

0, and v = (v11; :::; v1T ; :::; vK1; :::; vKT )
0.

The formulation of our empirical model as a random e¤ects model is convenient for
Bayesian analysis. Although equation (26) can also be formulated as a �xed e¤ects model, we
prefer a random e¤ects model. With a �xed e¤ects model, technical e¢ ciency is calculated
relative to the country with the smallest intercept, which may not be the most e¢ cient
one in the case of the quadratic directional output distance function. This is because this
function has an additive structure and thus the magnitude of the intercept is more likely to
be an indicator of economy size than an indicator of e¢ ciency level (in percentage form).
For the case of the translog radial output distance function framework, the country with the
smallest intercept is the most e¢ cient one. This is because the translog output distance
function has a multiplicative structure and e¢ ciency levels obtained within this framework
are in percentage form.
We �rst specify priors for the parameters in (26). Following Koop and Steel (2001) and

O�Donnell and Coelli (2005), we adopt the following prior for �

p (�) / I (� 2 Rj) (27)

where I (�) is an indicator function which takes the value 1 if the argument is true and
0 otherwise, and Rj is the set of permissible parameter values when no monotonicity and
curvature constraints (j = 0) and when both monotonicity and curvature constraints (j = 1)
must be satis�ed.
We also follow O�Donnell and Coelli (2005) and use the following prior for h

p(h) / 1

h
, where h =

1

�2
> 0 (28)

16



implying that h is fully determined by the likelihood function � see the conditional posterior
density for h in equation (34).
For the prior of uit, we choose an exponential distribution. This is mainly because van

den Broeck et al. (1994) �nd that models based on this distribution are reasonably robust
to changes in priors. Since the exponential distribution is a special case of the gamma
distribution, the prior of uit can be written as

p
�
uit
����1 � = fGamma �uit ��1; ��1 � . (29)

According to Fernandez et al. (1997), in order to obtain a proper posterior we need a
proper prior for the parameter, �. Accordingly, we use the prior

p(��1) = fGamma(�
�1 j1; �� ). (30)

For the case of the radial output distance function, �� = � ln � �, where � � is the prior mean
of the technical e¢ ciency distribution � see, for example, O�Donnell and Coelli (2005).
Our best knowledge of the e¢ ciency of OECD countries is the mean e¢ ciency value of 83%
reported by Iyer et al. (2008) that examines the technical e¢ ciency for OECD countries for
the period 1982-2000. To investigate the sensitivity of our results to extreme changes to � �,
we experiment with various values of � � ranging from 1% to 99%. The results are always the
same up to the number of digits presented in Section 6, implying that our results obtained
from (18) are very robust to large changes in � �. For the case of the directional output
distance function, �� = !�, where !� is the prior mean of the environmental and technical
e¢ ciency distribution. To the best of our knowledge there is no study that has reported
the environmental and technical e¢ ciency for the OECD countries over a similar period.
But from (25), we see that !� must fall within the range of (0%� y; 100%� y), where y is
the mean of y. We thus set !� equal to 50% � y. We also investigate the sensitivity of
our results to extreme changes to !� by experimenting with various values of !� within its
possible range. We �nd that the results are always the same as those presented in Section
6, suggesting that our results obtained from (25) are very robust to large changes in !�.
The likelihood function of q, given �; hv;u; and ��1, is

L
�
q
���; hv;u; ��1 � = KY

i=1

TY
t=1

(r
h

2�
exp

�
�h
2
(qit � s0it� + uit)

2

�)

/ hKT=2 exp
�
�h
2
v0v

�
, (31)

where v = (q � s0� + u).
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Combining the likelihood function in (31) and the priors in (27)-(30), we obtain the joint
posterior density

f
�
�; h;u; ��1 jq

�
/ hKT=2�1 exp

�
�h
2
v0v

�
I (� 2 Rj)

�
KY
i=1

TY
t=1

�
��1 exp

�
���1uit

��
exp

�
�����1

�
. (32)

As noted above, all the productivity, technical change, and e¢ ciency measures are functions
of �, h, u, and ��1. Let g(�,h,u,��1) represent one such function. In theory, we could
obtain the moments of g(�,h,u,��1) from the posterior density through integration. Un-
fortunately, these integrals cannot be computed analytically. Therefore, we use the Gibbs
sampling algorithm which draws from the joint posterior density by sampling from a series
of conditional posteriors. Once draws from the joint posterior density have been obtained,
any posterior measure of interest can be calculated.
The full conditional posteriors of �; h;u; and ��1 are respectively

p
�
�
��q; h;u; ��1 � / fNormal �� ���b; h�1 (ss0)�1� I (� 2 Rj) (33)

p
�
h
��q;�;u; ��1 � / fGamma �h ����KT2 ;

1

2
v0v

�
(34)

p
�
u
��q;�; h; ��1 � / fNormal �u js0� � q � (h�)�1�KT ; h�1IKT �� KY

i=1

TY
t=1

I (uit � 0) (35)

p
�
��1 jq;�; h;u

�
/ fGamma

�
��1 jKT + 1;u0�KT + ��

�
(36)

where b = (ss0)�1s[q + u], IKT is a KT �KT identity matrix, and �KT is a KT � 1 vector
of ones.

6 Empirical Results

We estimate the radial output distance function (18) and the directional output distance
function (25) separately using the Bayesian procedure outlined in Section 5. As discussed in
Section 4, we pay particular attention to the monotonicity and curvature conditions of the
radial output distance function and those of the directional output distance function, so that
the empirical results obtained are consistent with microeconomic theory. We �rst estimate
each of these two models without imposing monotonicity and curvature conditions. However,
these conditions are violated for both models, whether they are evaluated at posterior means
or using 95% credible intervals. Since regularity is not attained for the unconstrained models,
we reestimate (18) and (25) separately with monotonicity and curvature conditions imposed.
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The estimated parameters, standard deviations, and 95% credible intervals (de�ned by
2.5 and 97.5 percentiles) from the two regularity-constrained models are reported in Tables
1.1 and 1.2 respectively. For the radial output distance function model, there is a simple
way to check whether monotonicity conditions are satis�ed, by looking at the signs of the
estimates of b1, b2, and b3. Speci�cally, following O�Donnell and Coelli (2005), the sample
data is de�ated prior to the estimation of (18) so that all output and input variables have a
sample mean of one and the time trend has a sample mean of zero. When evaluated at these
variable means, @ lnDo (y;x; t) =@ lnxn collapses to bn and the monotonicity conditions can
therefore be expressed as bn � 0 [see (19)]. As can be seen from Table 1.1, the estimates
of b1, b2, and b3 all have the right signs (i.e., bn � 0, i = 1; 2; 3), implying the theoretical
monotonicity constraints are satis�ed.
We also calculate simulation ine¢ ciency factor (SIF) values for all the parameters of the

two regularity-constrained models. As can be seen from the last column of Table 1.1 and
that of Table 1.2, all the SIF values are less than 20 and most of them are lower than 15,
a quite strong indication of the convergence of the two samplers. Thus, in what follows we
focus on empirical results from the two regularity-constrained models.

6.1 Productivity Growth

With the estimated parameters from the regularity-constrained translog radial output dis-
tance function, we compute average annual productivity growth over the sample period for
each country, using the conventional Feng and Serletis (2010) productivity index, PGS. The
results are shown in Panel A of Table 2. As can be seen, this measure ranges from 0:0260 to
0:0525 with Ireland, Denmark, and Finland being the three top performers and Japan, the
United State, and Canada being the three bottom performers. This �nding is generally con-
sistent with those found in previous studies that also employ conventional-type productivity
indexes. For example, OECD (2001) applies the Jorgenson and Griliches (1967) Divisia
productivity index to a group of OECD countries over the period 1980-1999 and �nds that
average annual productivity growth ranges from 0:0100 to 0:0400 with Ireland, Finland, and
Norway being the three top performers and the U.S. and Canada being the two bottom
performers.
With the estimated parameters from the regularity-constrained quadratic directional out-

put distance function, we also compute average annual productivity growth over the sample
period for each country, using the Divisia�Luenberger productivity index, PGL. The results
are shown in Panel B of Table 2. In this case, annual productivity growth ranges from 0:0223
to 0:0413, with Japan and Ireland being the two top performers and the United States and
Australia being the two bottom performers.
An important question we need to address here is whether the conventional Feng and

Serletis (2010) productivity index, by failing to take into account the bad output, CO2,
leads to misleading results regarding productivity growth. It is tempting to answer this
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question by directly comparing the magnitudes of the estimates of the conventional Feng
and Serletis (2010) productivity index with those of the Divisia�Luenberger productivity
index. However, this practice is inappropriate because productivity growth is measured
along di¤erent directions in these two indexes. Speci�cally, in the case of the Divisia�
Luenberger productivity index, productivity growth is measured along the direction g =
(1;�1), whereas in the case of the conventional Feng and Serletis (2010) productivity index
it is measured along the direction g(t) = (y(t);x(t)). The use of di¤erent directions means
that the magnitudes of the estimates of the two indexes cannot be compared directly.
To answer the above question, we instead compare the productivity ranking of individ-

ual countries based on the Divisia�Luenberger productivity index with that based on the
conventional Feng and Serletis (2010) productivity index. Our logic here is that if the
conventional Feng and Serletis (2010) productivity index is valid for situations where bad
outputs are present, then these two indexes should yield (roughly) consistent rankings of
individual countries; for example, a country that is highly (poorly) ranked according to the
Divisia�Luenberger productivity index should also be highly (poorly) ranked according to
the conventional Feng and Serletis (2010) productivity index. A comparison of the produc-
tivity growth estimates in Panel A of Table 2 with their corresponding estimates in Panel B
of Table 2 reveals that this is not the case. For example, Japan, which ranks at the bottom
according to the conventional primal Divisia productivity index, outperforms all the other
countries according to the Divisia�Luenberger productivity index. France, which ranks
12th according to the conventional Feng and Serletis (2010) productivity index, ranks 5th
according to the Divisia�Luenberger productivity index.
To formally examine whether the conventional Feng and Serletis (2010) productivity

index yields a ranking that is roughly consistent with that yielded by the Divisia�Luenberger
productivity index, we formally calculate the Spearman rank correlation coe¢ cient between
the two indexes for each of the sample years. Speci�cally, we �rst use the following posterior
probability to rank individual countries

Prob (Rank (PGj) = ith) , i; j = 1; � � �; K;

where K is the number of countries, i represents a particular rank, PGj is the productivity
growth of country j, and Rank(PGj) is the rank of country j in terms of productivity growth.
As noted by Atkinson and Dorfman (2005), Gri¢ ths and O�Donnell (2005), and Ntzoufras
(2009), when productivity growth (or other ranking criteria) is estimated within a Bayesian
framework, it is more appropriate to use posterior probabilities to rank individual countries
(or �rms) than to use posterior means. This is because the former approach takes into
account the simulating variation of productivity growth. Since PGj can be computed by
using either the conventional Feng and Serletis (2010) productivity index or the Divisia�
Luenberger productivity index, we end up with two ranking results (ranking lists): Rankj1,
the rank of country j based on the conventional Feng and Serletis (2010) productivity index,
and Rankj2, the rank of the same country based on the Divisia�Luenberger productivity
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index. We then calculate the Spearman rank correlation coe¢ cient between Rankj1 and
Rankj2 for each year, as follows

� = 1�
6
PK

j=1(Rankj1 � Rankj2)2

K(K2 � 1) .

If � = �1, there is perfect negative correlation; if � = 1, there is perfect positive correlation;
and if � = 0, there is no correlation. We also calculate con�dence intervals for the Spearman
rank correlation coe¢ cients. Since Rankj1 and Rankj2 are computed from twoMCMC chains
using di¤erent datasets, these con�dence intervals cannot be obtained within a Bayesian
framework. In this paper, we instead bootstrap each of the Spearman rank correlation
coe¢ cient 10,000 times.
The Spearman rank correlation coe¢ cients and 95% bootstrap con�dence intervals are

presented in Table 3. As can be seen in this table, all of the Spearman rank correlation
coe¢ cients are smaller than one (ranging from 0:0750 to 0:8929) and none of the bootstrap
con�dence intervals contain one. Particularly, in 1983 and 1984 the Spearman rank corre-
lation coe¢ cient is as low as 0:0750 and 0:2214 respectively, suggesting that there is little
correlation between the two rankings in these years. These results show that failure to
allow for bad outputs can greatly change the ranking of individual countries and thus the
conventional Feng and Serletis (2010) productivity index is not suitable for situations where
undesirable outputs are present.

6.2 Technological Change and E¢ ciency Change

We now turn to the technological change and e¢ ciency change components of the two in-
dexes. The two components of the conventional Feng and Serletis (2010) productivity index,
obtained by using (12), are presented in Panel A of Table 4. A comparison of these two
components reveals that technological change (TCS) is much larger than e¢ ciency change
(ECS) for all the sample countries. Taking the United State for example, it has an average
annual technological change of 0:0280, compared with an average annual e¢ ciency change
of only 0:0017. The dominance of technological change suggests that when the good output
(i.e., GDP) alone is taken into account, innovation plays a much more important role in
driving the productivity growth than improvements in e¢ ciency. This �nding is consistent
with those from previous studies, including the classic work by Färe et al. (1994).
The two components of the Divisia�Luenberger productivity index, obtained by using

(3), are shown in Panel B of Table 4. As with the case of the conventional Feng and Serletis
(2010) productivity index, technological change (TCL) is still the dominant force behind
productivity growth. Taking the United State for example, its average annual technological
change is 0:0226, whereas its e¢ ciency change (ECL) is only �0:0002. This suggests that
even when the bad output is taken into account, innovation still plays a much more important
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role in driving productivity growth in the sample countries. This �nding is consistent with
that of Mahlberg and Sahoo (2011), who investigate the productivity growth in 22 OCED
countries by estimating the directional input distance function using the data envelopment
analysis (DEA) approach.
For the same reason as discussed above in the context of productivity growth, we do not

directly compare the magnitudes of the TCS and TCL. Instead we compute the Spearman
rank correlation coe¢ cient between the ranking of individual countries based on TCS and
that based on TCL. As can be seen from Table 5, all of the Spearman rank correlation
coe¢ cients are smaller than one and none of the bootstrap con�dence intervals contain one.
Particularly, the point estimates of the Spearman rank correlation coe¢ cients from 1982
to 1988 are all negative (ranging from �0:4714 to �0:0643), suggesting that in these years
there is a negative correlation between the two rankings; i.e., countries, which are highly
(poorly) ranked according to the Divisia�Luenberger productivity index, are very likely to
be mistakenly ranked low (high) according to the conventional Feng and Serletis (2010)
productivity index. This result con�rms that the use of the conventional Feng and Serletis
(2010) productivity index can lead to misleading conclusions when undesirable outputs are
present.
Turing to e¢ ciency change, recall that positive values imply that the country is catching

up with the best practice frontier and that negative values imply the country is lagging behind
the frontier. Looking �rst at the e¢ ciency change component of the Divisia�Luenberger
productivity index in Panel B of Table 4, we see that only two countries, France and Ireland,
show positive values, suggesting that when the bad output is taken into account, on average
only these two countries are moving towards the frontier. However, when the conventional
Feng and Serletis (2010) productivity index is used (see the second column of Panel A of
Table 4), seven more countries (besides France and Ireland) show positive values, implying
that on average these seven countries are mistakenly classi�ed as ones whose e¢ ciencies
improve over time. This suggests that by failing to take into account the bad output,
the conventional Feng and Serletis (2010) productivity index not only leads to misleading
conclusions regarding technological change, but also results in wrong conclusions concerning
e¢ ciency change.

7 Conclusion

Conventional Divisia-type productivity indexes [the Solow (1957) index, the Jorgenson and
Griliches (1967) index, the Fuss (1994) index, and the Diewert and Fox (2008) index, and the
Divisia�Luenberger productivity index] have long enjoyed great popularity. However, they
all ignore undesirable outputs. In an attempt to �ll in this gap, we propose a primal Divisia-
type productivity index by totally di¤erentiating the directional output distance function
with respect to time. We refer to this new productivity index as the Divisia�Luenberger
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productivity index. This index inherits the desirable properties possessed by the directional
output distance function and allows for the simultaneous expansion of desirable outputs and
contraction of undesirable outputs. We also show that the Divisia�Luenberger productivity
index can be decomposed into two components: a directional-output-distance-function-based
technological change term and a directional-output-distance-function-based e¢ ciency change
term. This decomposition is consistent with the tradition of Färe et al. (1994).
We also empirically examine the e¤ects of failure to take into account bad outputs when

they are present. This is done by comparing the Divisia�Luenberger productivity index
and the conventional Divisia-type productivity indexes, using aggregate data on 15 OECD
countries over the period 1981-2000. In doing so, we �rst choose the Feng and Serletis
(2010) productivity index as a representative of the aforementioned conventional Divisia
productivity indexes. This is because as theoretically shown by Feng and Serletis (2010),
the Feng and Serletis (2010) productivity index is dual to all the famous Divisia-type pro-
ductivity/technical change indexes in the literature. To construct the Divisia�Luenberger
productivity index and the Feng and Serletis (2010) productivity index for the sample coun-
tries, we estimate a quadratic directional output distance function and a translog radial
output distance function, respectively, both subject to the theoretical regularity conditions.
This is done by using a Bayesian approach due to its capability of imposing nonlinear con-
straints. Our empirical results show that by failing to take into account the bad output, the
conventional Feng and Serletis (2010) productivity index not only leads to misleading con-
clusions regarding productivity growth and technological change, but also results in wrong
conclusions concerning e¢ ciency change.
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8 Appendix

In our particular case where there is one good output and one bad output, the left hand side
of equation (1) can be expanded as follows (by equation (20))

~Do (y + kgy; b� kgb;x; t; g)

= �0 + �1 (y + kgy) + �1(b� kgb) +
3X
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2
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(A1)

Noting that the terms in the �rst two lines on the right hand side of (A1) are just ~Do (y; b;x; t; g),
(A1) can be rewritten as

~Do (y + kgy; b� kgb;x; t; g) = ~Do (y; b;x; t; g) +

�
�1kgy � �1kgb +

1

2
�11
�
2ykgy + k
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+�11
�
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i
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According to the translation property in equation (1), the expression inside the square
bracket on the right hand side of (A2) is just �k, that is

�1kgy � �1kgb +
1

2
�11
�
2ykgy + k

2g2y
�
+
1

2
�11
�
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�
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�n1xnkgy

�
3X
n=1

'n1xnkgb + �11
�
�ykgb + bkgy � k2gygb

�
+ ��1tkgy � ��1tkgb

= �k

which, after dividing both sides by k, can be rewritten as
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2
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When (gy;�gb) = (1;�1), (A3) can be further written as
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2
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3X
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which, after rearranging, can be written as
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A su¢ cient condition for (A4) to hold is

�1 � �1 = �1; �11 = �11 = �11; �n1 = 'n1 (n = 1; 2; 3) ; and ��1 = ��1

which is just (21). Thus as can be seen from the above proof, (21) is obtained by the
application of the translation property of the directional output distance function.
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Table 1.1. Parameter Estimates From The Constrained
Translog Output Distance Function Model

Standard
Variable Parameter Mean deviation 95% Credible Interval SIF

intercept a0 0:3974 0:0213 (0:3571; 0:4388) 1:3465
lnx1 b1 �0:3675 0:0508 (�0:4729;�0:2747) 16:1126
lnx2 b2 �0:4855 0:0660 (�0:6093;�0:3610) 5:4063
lnx3 b3 �0:2372 0:0380 (�0:3135;�0:1680) 1:3369
t �� �0:0423 0:0029 (�0:0477;�0:0365) 16:0887
t2 ��� 0:0007 0:0003 (0:0001; 0:0011) 5:4199

t lnx1 e��1 �0:0096 0:0028 (�0:0154;�0:0043) 1:3668

t lnx2 e��2 0:0084 0:0037 (0:0013; 0:0153) 16:1226

t lnx3 e��3 0:0049 0:0027 (�0:0008; 0:0100) 5:3863

(lnx1)
2

b11 0:2001 0:1014 (0:0132; 0:4179) 16:0623
lnx1 lnx2 b12 �0:0450 0:1454 (�0:3460; 0:2139) 5:4133
lnx1 lnx3 b13 0:0035 0:0676 (�0:1135; 0:1514) 1:3538

(lnx2)
2

b22 0:0493 0:2069 (�0:3279; 0:4660) 16:1534
lnx2 lnx3 b23 �0:0943 0:0862 (�0:2491; 0:0827) 5:4344

(lnx3)
2

b33 0:0309 0:0611 (�0:0990; 0:1438) 1:3251



Table 1.2. Parameter Estimates From The Constrained
Quadratic Directional Output Distance Function

Standard
Variable Parameter Mean deviation 95% credible interval SIF

intercept �0 0:0066 0:0069 (�0:0065, 0:0208) 6:6766
x1 
1 0:0742 0:0238 (0:0279, 0:1210) 11:9020
x2 
2 0:1824 0:0449 (0:0939, 0:2719) 10:4154
x3 
3 �0:0011 0:0033 (�0:0075, 0:0054) 10:2953eb �1 0:1873 0:0626 (0:0623, 0:3085) 14:7051
t �� �0:0025 0:0013 (�0:0053, 0:0002) 8:3081eb2 �11 �0:2709 0:0863 (�0:4416, � 0:1005) 14:6019
t2 ��� 0:0002 0:0001 (0:0000, 0:0005) 9:1657
bx1 '11 �0:2441 0:0376 (�0:3177, � 0:1693) 12:3627
bx2 '21 0:4753 0:0921 (0:2926; 0:6562) 15:2927
bx3 '31 0:0414 0:0091 (0:0235, 0:0593) 10:6562
tx1 
�1 0:0145 0:0017 (0:0111, 0:0180) 15:5724
tx2 
�2 0:0095 0:0031 (0:0032, 0:0156) 10:2267
tx3 
�3 0:0000 0:0002 (�0:0005, 0:0003) 5:8618ebt ��1 �0:0105 0:0032 (�0:0169, � 0:0041) 9:8852

(x1)
2


11 �0:1249 0:0196 (�0:1637, � 0:0866) 14:0788
x1x2 
12 0:2953 0:0341 (0:2276, 0:3615) 15:2578
x1x3 
13 0:0277 0:0044 (0:0188, 0:0364) 9:4963

(x2)
2


22 �0:7529 0:0597 (�0:8697, � 0:6353) 16:7804
x2x3 
23 �0:0533 0:0106 (�0:0742, � 0:0324) 13:0239

(x3)
2


33 �0:0057 0:0010 (�0:0078, � 0:0036) 8:4077



Table 2. Productivity Growth Indexes

A. Feng and Serletis (2010) B. Divisia�Luenberger
Country Mean 95% credible interval Mean 95% credible interval

Australia 0:0361 (0:0318, 0:0405) 0:0238 (0:0166, 0:0316)
Canada 0:0339 (0:0287, 0:0387) 0:0288 (0:0240, 0:0336)
Denmark 0:0450 (0:0416, 0:0486) 0:0327 (0:0187, 0:0492)
Finland 0:0433 (0:0378, 0:0485) 0:0322 (0:0162, 0:0507)
France 0:0360 (0:0324, 0:0397) 0:0358 (0:0327, 0:0361)
Germany 0:0369 (0:0315, 0:0422) 0:0301 (0:0270, 0:0334)
Ireland 0:0525 (0:0479, 0:0571) 0:0384 (0:0129, 0:0743)
Italy 0:0370 (0:0333, 0:0408) 0:0350 (0:0314, 0:0386)
Japan 0:0260 (0:0186, 0:0347) 0:0413 (0:0375, 0:0450)
Netherlands 0:0375 (0:0338, 0:0410) 0:0279 (0:0208, 0:0357)
Norway 0:0380 (0:0334, 0:0422) 0:0362 (0:0223, 0:0534)
Spain 0:0392 (0:0344, 0:0443) 0:0316 (0:0272, 0:0363)
Sweden 0:0415 (0:0371, 0:0460) 0:0347 (0:0259, 0:0457)
U.K. 0:0395 (0:0352, 0:0439) 0:0388 (0:0343, 0:0434)
U.S. 0:0294 (0:0240, 0:0348) 0:0223 (0:0187, 0:0260)



Table 3. Spearman Rank
Correlation Coefficients of Productivity Growth

95% bootstrap
Year Coe¢ cient, � con�dence interval

1982 0:5607 (0:0335; 0:8137)
1983 0:0750 (�0:3967; 0:5210)
1984 0:2214 (�0:2654; 0:6478)
1985 0:4357 (�0:0882; 0:8180)
1986 0:6429 (0:2741; 0:8347)
1987 0:5500 (0:1686; 0:7629)
1988 0:7179 (0:4248; 0:8625)
1989 0:6679 (0:3449; 0:8296)
1990 0:7036 (0:2420; 0:8929)
1991 0:6107 (0:0108; 0:9051)
1992 0:3929 (�0:2199; 0:7735)
1993 0:5571 (�0:0664; 0:8609)
1994 0:8929 (0:7553; 0:9486)
1995 0:6964 (0:2557; 0:8852)
1996 0:8286 (0:5517; 0:9744)
1997 0:8893 (0:7091; 0:9550)
1998 0:7179 (0:2949; 0:9313)
1999 0:7000 (0:1709; 0:9388)
2000 0:8536 (0:6866; 0:9287)



Table 4. Technological Change and Efficiency Change

A. Components of Feng and Serletis (2010) index B. Components of Divisia—Luenberger index
Technological Change Efficiency Change Technological Change Efficiency Change

Country Mean 95% credible interval Mean 95% credible interval Mean 95% credible interval Mean 95% credible interval

Australia 00382 (00364 00399) −00016 (−00060 00026) 00295 (00256 00334) −00057 (−00120 00012)
Canada 00370 (00318 00429) −00025 (−00076 00013) 00293 (00245 00339) −00005 (−00028 00031)
Denmark 00453 (00431 00475) 00001 (−00028 00032) 00330 (00255 00406) −00003 (−00137 00164)
Finland 00428 (00404 00449) 00008 (−00043 00060) 00349 (00277 00420) −00027 (−00187 00162)
France 00358 (00338 00378) 00005 (−00024 00038) 00354 (00324 00384) 00005 (−00007 00023)
Germany 00339 (00315 00364) 00031 (−00019 00082) 00343 (00312 00376) −00042 (−00067−00018)
Ireland 00516 (00482 00550) 00012 (−00013 00047) 00329 (00154 00526) 00056 (−00175 00395)
Italy 00369 (00344 00397) 00004 (−00025 00037) 00355 (00323 00387) −00005 (−00022 00017)
Japan 00332 (00297 00369) −00063 (−00119 00007) 00435 (00397 00474) −00022 (−00032−00011)
Netherlands 00389 (00370 00409) −00010 (−00047 00023) 00294 (00253 00335) −00015 (−00077 00059)
Norway 00376 (00334 00415) 00007 (−00012 00036) 00361 (00267 00457) 00000 (−00121 00169)
Spain 00424 (00401 00444) −00025 (−00072 00021) 00397 (00355 00439) −00081 (−00117−00035)
Sweden 00426 (00397 00460) −00007 (−00049 00035) 00365 (00319 00411) −00017 (−00104 00091)
U.K. 00394 (00366 00419) 00005 (−00031 00044) 00389 (00343 00436) 00000 (−00015 00021)
U.S. 00280 (00237 00324) 00017 (−00018 00059) 00226 (00191 00262) −00002 (−00008 00004)



Table 5. Spearman Rank
Correlation Coefficients of Technological Change

95% bootstrap
Year Coe¢ cient, � con�dence interval

1982 �0:4464 (�0:7625;�0:0059)
1983 �0:4714 (�0:7660;�0:0312)
1984 �0:3393 (�0:7121; 0:1908)
1985 �0:3071 (�0:7155; 0:2913)
1986 �0:2857 (�0:7189; 0:3318)
1987 �0:2321 (�0:6687; 0:3526)
1988 �0:0643 (�0:5732; 0:4766)
1989 0:0571 (�0:4080; 0:5020)
1990 0:3179 (�0:2203; 0:7199)
1991 0:4821 (�0:0044; 0:8080)
1992 0:4964 (0:0029; 0:8146)
1993 0:5000 (0:0143; 0:8209)
1994 0:5036 (0:0056; 0:8192)
1995 0:5429 (0:0920; 0:8260)
1996 0:6000 (0:1329; 0:8466)
1997 0:6000 (0:1328; 0:8448)
1998 0:6321 (0:1711; 0:8698)
1999 0:7000 (0:2980; 0:8972)
2000 0:7071 (0:3039; 0:9055)
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