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Abstract:

We investigate whether the United States economy responds negatively to oil price un-
certainty and whether oil price shocks exert asymmetric effects on economic activity. In
doing so, we relax the assumption in the existing literature that the data are governed by a
single process, modifying the Elder and Serletis (2010) bivariate structural GARCH-in-Mean
VAR to accommodate Markov regime switching in order to account for changing oil price
dynamics over the sample period. We find evidence of asymmetries, against those macroeco-
nomic theories that predict symmetries in the relationship between real aggregate economic
activity and the real price of oil.
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1 Introduction

There is an ongoing debate in macroeconomics about how oil price shocks and oil price
uncertainty affect the level of economic activity. Those of the view that positive oil price
shocks have been the major cause of recessions in the United States (and other oil-importing
countries) as, for example, Hamilton (1983, 1996, 2011), Hooker (1996), and Herrera et al.
(2011), appeal to models that imply asymmetric responses of real output to oil price increases
and decreases. These models are able to explain larger economic contractions in response to
positive oil price shocks and smaller economic expansions in response to negative ones. On
the other hand, those of the view that positive oil price shocks do not cause recessions as, for
example, Kilian (2008), Edelstein and Kilian (2009), and Kilian and Vigfusson (2011a,b),
appeal to theoretical models of the transmission of exogenous oil price shocks that imply
symmetric responses of real output to oil price increases and decreases. These models cannot
explain large declines in the level of economic activity in response to positive oil price shocks.
A series of recent papers by Elder and Serletis (2010, 2011), Bredin et al. (2011), Rahman

and Serletis (2011, 2012), Pinno and Serletis (2013), Jo (2014), Elder (2018), and Serletis
and Mehmandosti (2018) also look at the relationship between the price of oil and the level
of economic activity, focusing on the role of uncertainty about the price of oil. They appeal
to the real options theory, also known as investment under uncertainty, which predicts that
firms are likely to delay making irreversible investment decisions in the face of uncertainty
about the price of oil, particularly when the cash flow from investments is contingent on
the oil price – see, for example, Bernanke (1983), Brennan and Schwartz (1985), Madj and
Pindyck (1987), Brennan (1990), Gibson and Schwartz (1990), and Dixit and Pindyck (1994).
In doing so, they utilize internally-consistent simultaneous equations empirical models that
accommodate an independent role for the effects of oil price uncertainty. They find that oil
price uncertainty has had a negative and statistically significant effect on several measures
of investment, durables consumption, and aggregate output. They also find that accounting
for the effects of oil price uncertainty tends to exacerbate the negative dynamic response of
economic activity to a negative oil price shock, while dampening the response to a positive
one.
Most of the recent literature on the macroeconomic effects of oil price shocks and oil price

uncertainty assumes that the data are governed by a single process. However, as recently
noted by Serletis and Mehmandosti (2018, p. 9), “the crude oil market in the United States
(and globally) has undergone very significant structural changes over the past 150 years
due to technological innovation, revisions in regulatory regimes and market structures, the
emergence of new players, such as OPEC, and changes in the sources of supply and demand.”
Motivated by these considerations, we assume a more complex process to allow for different
types of relationship at different times. Two classes of models that allow this to occur have
been used so far in the literature – the ‘time-varying coeffi cient model’ and the ‘Markov
switching model.’The former assumes that the relationship changes in every period (which
might not be the case in the real world), whereas the latter assumes a switching mechanism
from one state to another that is controlled by an unobserved variable governed by a Markov
process.
In this paper we take the Markov switching approach, associated with Hamilton (1989,

1990), which has been widely followed in the analysis of economic and financial time series
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– see, for example, Garcia and Perron (1989) and Sims and Zha (2006). In doing so, we
modify the Elder and Serletis (2010) methodology by assuming Markov regime switching
to account for changing oil price dynamics over the sample period. In particular, we use a
Markov switching (identified) structural GARCH-in-Mean VAR in real output growth and
the change in the real price of oil, associate the oil price change VAR residual with exogenous
oil price shocks, use the conditional standard deviation of the forecast error for the change
in the real oil price as a measure of uncertainty about the impending real price of oil, and
investigate the relationship between the real price of oil and the level of real economic activity
in the United States using quarterly data since the early 1970s.
In the context of a mean-square stable structural GARCH-in-Mean VAR with Markov

regime switching, we find that oil price uncertainty has a negative and statistically significant
effect on the real output growth rate, and that this effect is asymmetric over contractions and
expansions in the business cycle, being significantly larger during contractions and periods
when large oil price changes occur. We also find that oil price uncertainty tends to amplify
the negative dynamic response of the growth rate to positive oil price shocks, and to dampen
the positive response to negative oil price shocks during expansions in the business cycle.
The rest of the paper is organized as follows. Section 2 reviews the related empirical

literature regarding the macroeconomic effects of oil price uncertainty and the effects of
positive and negative oil price shocks on the level of economic activity. In Section 3 we
modify the Elder and Serletis (2010) bivariate structural GARCH-in-Mean VAR, by assuming
Markov regime switching. We discuss identification and estimation issues in Section 4,
present the empirical results in Section 5, and investigate regime stability issues in Section
6. The final section concludes the paper.

2 Literature Review and Motivation

As noted in the Introduction, our paper contributes to an extensive body of literature that
investigates the macroeconomic effects of oil price shocks and oil price uncertainty. Much of
the literature uses the Elder and Serletis (2010) model. It is a bivariate structural GARCH-
in-Mean VAR in real output growth and the change in the real price of oil, as follows

Bzt = C +
k∑
i=1

Γizt−i + Ψ
√
ht + εt (1)

εt|Ωt−1 ∼ (0, H t) , H t =

[
ho,t 0
0 hy,t

]
where zt is a column vector in the change in the real price of oil, ∆ ln ot, and the real
output growth rate (in the rest of the paper, we will refer to it as the growth rate), ∆ ln yt,
zt = [∆ ln ot ∆ ln yt]

′, Ωt−1 denotes the information set at time t− 1, and

B =

[
1 0
b 1

]
; Γi =

[
γi,11 γi,12
γi,21 γi,22

]
; Ψ =

[
0 0
ψ 0

]
; ht =

[
ho,t
hy,t

]
; εt =

[
εo,t
εy,t

]
.

The system is identified, as in Elder and Serletis (2010), by assuming that the diagonal
elements of B are unity, that B is lower triangular, and that the structural shocks, εt, are
uncorrelated.
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Elder and Serletis (2010) use a univariate GARCH(1,1) specification to model the con-
ditional variance of the change in the real price of oil, ho,t, and the conditional variance of
the growth rate, hy,t, as follows

ho,t = d11 + d12εo,t−1 + d13ho,t−1 (2)

hy,t = d21 + d22εy,t−1 + d23hy,t−1. (3)

They estimate their model by full information maximum likelihood, avoiding Pagan’s (1984)
generated regressor problems associated with estimating the variance function parameters
separately from the conditional mean parameters. The procedure is to maximize the log
likelihood with respect to the structural parameters – see Elder and Serletis (2010) for
more details.
We estimate the bivariate structural GARCH-in-Mean VAR, consisting of equations (1)-

(3), using quarterly data for the United States over the period from 1974:1 to 2016:3. For
the real output series, yt, we use the real GDP series from the Bureau of Economic Analysis.
For the oil price series, ot, we use the composite refiners’acquisition cost (RAC) of crude
oil, as compiled by the U.S. Department of Energy, and convert it in real terms by dividing
it by the GDP deflator. In Figure 1 we plot the natural log of the real oil price, ln ot, and
its growth rate, ∆ ln ot, and in Figure 2 the natural log of real output, ln yt, and its growth
rate, ∆ ln yt.
We follow Elder and Serletis (2010) and estimate the model for k = 4 in equation (1),

using the logarithmic first differences of the data, ∆ ln yt and ∆ ln ot, over the period from
1974:1 to 2016:3. The estimation results are reported in Table 1. We find that oil price
uncertainty has a negative, but statistically insignificant effect on the real output growth
rate: ψ̂ = −0.001 (with a p-value of 0.866). This is in contrast with the evidence reported by
Elder and Serletis (2010) who found that oil price uncertainty has a negative and statistically
significant effect on ∆ ln yt; in particular, using quarterly data from 1974:1 to 2008:1, they
report that ψ̂ = −0.022 (with a t-statistic of 2.30). To remove the inconsistency between the
results presented in Table 1 and those reported in Elder and Serletis (2010), we re-estimate
the model over the Elder and Serletis (2010) sample period, from 1974:1 to 2008:1, and
report the results in Table 2. As can be seen in Table 2, oil price uncertainty has a negative
and statistically significant effect on the growth rate, ψ̂ = −0.017 (with a p-value of 0.008),
consistent with Elder and Serletis (2010).
Our evidence, however, suggests that the empirical results in Elder and Serletis (2010)

are not robust to including the period after the global financial crisis and Great Recession,
potentially because of a change in the economic regime and oil price dynamics. In order
to address the issue of changing oil price dynamics and economic regimes over the sample
period, in the next section we modify the Elder and Serletis (2010) methodology by assuming
Markov regime switching, thus allowing for complicated nonlinear dynamics and changes
in the parameters of the structural GARCH-in-Mean VAR. This framework is suffi ciently
flexible to allow for different types of responses at different times and also utilizes all of the
available observations on the series in the estimation of these responses.
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3 A Markov Switching Structural VAR

Our empirical framework modifies the Elder and Serletis (2010) mean equation (1) as follows

Bstzt = Cst +

k∑
i=1

Γi,stzt−i + Φst

√
ho,t,st + εt,st (4)

εt,st |Ωt−1 ∼
(
0, H t,st

)
, H t,st =

[
ho,t,st 0

0 hy,st

]
, Φst =

[
0
φst

]
Given the scope of the present paper, we keep the Elder and Serletis (2010) setup, and allow
Φst to capture the effect of oil price uncertainty on the growth rate. This is the only GARCH-
in-Mean term that we consider, and in doing so, we also impose a restriction that oil price
uncertainty does not affect the price of oil, as in Elder and Serletis (2010). st denotes the
unobserved economic regime, and is assumed to follow a first order, homogeneous, two-state
Markov chain governed by the transition matrix

P =

[
p11 p12
p21 p22

]
where pij = P (st = i |st−1 = j ), i, j = 1, 2 and p11 = 1 − p21 and p12 = 1 − p22. All the
parameters in the Bst, Cst , Γst , and Φst matrices are regime-dependent, taking different
values across the two regimes (i and j can only take two values). We assume two regimes
in our estimation because of the prior we get from replicating Elder and Serletis (2010).
In particular, since including the period of the global financial crisis changes the results
significantly, it follows that oil price uncertainty may exert asymmetric effects on output
with respect to expansions and contractions in economic activity. Therefore, the two assumed
regimes should be able to describe the dynamic interactions between the real price of oil and
the real output growth rate across contractionary and expansionary phases of the business
cycle. Moreover, as suggested by Hamilton (1988, 1989) the two-regime model is often
suffi cient.
We also modify the Elder and Serletis (2010) specification for the conditional variances of

∆ ln ot and ∆ ln yt. As in Elder and Serletis (2010) we assume that the conditional variance
of ∆ ln ot, ho,t,st , follows a GARCH(1,1) specification

ho,t,st = d1,st + d2,stεo,t−1,st−1 + d3,stho,t−1,st−1 (5)

Regarding the variance of the growth rate, hy,st , we assume that it takes different values
in the two regimes to simplify the estimation of the highly non-linear model, instead of
assuming a GARCH(1,1) specification as in Elder and Serletis (2010).

4 Identification, Path Dependence, and Estimation

The lower triangular Bst matrix implies that the growth rate responds to the contempora-
neous change in the oil price. Under such an identifying assumption, oil price shocks could
be treated as predetermined, and this assumption has been adopted by Edelstein and Kilian
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(2007), Kilian (2009), and Elder and Serletis (2010). In particular, Kilian (2009) states that
this assumption is not testable, however, it can be well defended as detailed in Kilian (2009).
The estimation of our framework is also challenging. The GARCH specification (5)

for the oil price implies that ho,t,st depends on st and also indirectly on {st−1, st−2, . . .}.
That is, ho,t,st at time t depends on the entire sequence of regimes up to time t. One has
to construct the likelihood function by integrating over all possible paths and as it turns
out the estimation is not tractable; this is a problem, called path dependence, that typically
shows up in the estimation of regime switching GARCH models. To address this problem, we
need to use a collapsing procedure that could facilitate evaluation of the likelihood function.
In this paper, we follow Gray (1996) and integrate out the regime-dependent error term
εo,t and the regime-dependent variance ho,t,st at time t − 1 by taking the expectation so
that the GARCH specification does not require the entire sequence of regimes up to time t.
Therefore, we construct the regime-independent error term ε̄o,t and the regime-independent
oil price volatility h̄o,t by calculating

ε̄o,t = p(st = 1|Ωt−1)εo,t,st=1 + p(st = 2|Ωt−1)εo,t,st=2

and

h̄o,t = p(st = 1|Ωt−1)[(∆ ln ot − εo,t,st=1)2 + ho,t,st=1]

+p(st = 2|Ωt−1)[(∆ ln ot − εo,t,st=2)2 + ho,t,st=2]

−[p(st = 1|Ωt−1)(∆ ln ot − εo,t,st=1) + p(st = 2|Ωt−1)(∆ ln ot − εo,t,st=2)]2

where p(st = 1|Ωt−1) and p(st = 2|Ωt−1) are the prediction probabilities from the Hamilton
(1989) filter. We then plug ε̄o,t and h̄o,t into the GARCH specification (5) for the oil price
so that it becomes

ho,t,st = d1,st + d2,st ε̄o,t−1 + d3,sth̄o,t−1. (6)

Thus, ho,t,st depends only on the value of st and the likelihood function becomes tractable.
Under the normality assumption, the density at time t conditional on st = i is

f(zt|st = i,Ωt−1) =
1

2π
√
|H t,st=i|

exp

(
−1

2
εTt,st=iH

−1
t,st=iεt,st=i

)
and the density at time t can be found by summing over all possible regimes

f(zt|Ωt−1) =
2∑
i=1

f(zt|st = i,Ωt−1)p(st = i|Ωt−1).

The log-likelihood is then

L =
T∑
t=1

ln f(zt|Ωt−1)

with the first element of vech(H t,st=i), ho,t,st , being governed by equation (6). On the
other hand, the prediction probabilities are handled by the Hamilton (1989) filter. The
estimation is performed in RATS 9.0 using Maximum Likelihood and the BFGS (Broyden,
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Fletcher, Goldfarb & Shanno) algorithm combined with the derivative-free Simplex pre-
estimation method. To implement the estimation, we choose a set of initial values based
on the conventional structural GARCH-in-Mean VAR and the pre-estimation of our Markov
switching structural GARCH-in-Mean VAR.
To validate our Markov switching model, we estimate it with k = 4 in equation (4), and

conduct a model comparison using the Bayes factor

BF =
Pr (Data |Unrestricted model )
Pr (Data |Restricted model )

where the single regime (or non-Markov switching) structural GARCH-in-Mean VAR is the
restricted model. According to Kass and Raftery (1995), the logarithm of the Bayes factor
could be approximated using the Bayesian information criterion (BIC), as follows

2 lnBF ≈ − (BIC of Unrestricted model − BIC of Restricted model)

with 2 lnBF > 2 providing support for the unrestricted model. In our case, we achieve
2 lnBF = 5.862, which is evidence that the Markov switching structural GARCH-in-Mean
VAR should be preferred, compared to its restricted (single regime) version.

5 Empirical Evidence

We estimate the Markov switching structural GARCH-in-Mean VAR described in the pre-
vious section with k = 4 in equation (4), and report the point estimates of the mean and
variance function parameters in Table 3, with p-values in parentheses. According to the φ̂
values reported in Table 3, oil price uncertainty has a negative and statistically significant
effect on the growth rate in both regimes. We also find that oil price uncertainty exerts
asymmetric effects on real output with respect to economic conditions, as the effect is larger
in regime 2, since φ̂st=1 = −0.029 (with a p-value of 0.037) and φ̂st=2 = −0.605 (with a
p-value of 0.000).
To better understand the two regimes, we calculate the smoothed probabilities

p(st = i |Ω), i ∈ {1, 2}

where Ω is the full sample information, and plot the probability of regime 2 in Figure 3,
together with Hamilton’s (1996, 2003) net oil price increase over the previous four quarters,
x̃t, calculated as a nonlinear function of the growth rate of the real oil price

x̃t = max
[
0, ln ot −max

{
ln ot−1, ln ot−2, ln ot−3, ln ot−4

} ]
in order to filter out increases in the price of oil that represent corrections for recent declines.
As can be seen, regime 2 is generally consistent with contractions in the business cycle,
includes the recent Great Recession, and corresponds to the times when large oil price
changes occur. Moreover, the unconditional variance of the oil price change in regime 2,
calculated as d̂21/(1 − d̂22 − d̂23), is 911.610 and is larger than that in regime 1. We thus
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conclude that oil price uncertainty is more likely to have a larger negative effect on the growth
rate during contractions in the business cycle and at times when large oil price changes occur.
To assess the dynamic response of the growth rate to oil price shocks, we plot the impulse

response functions in Figures 4-6. They are obtained as in Elder (2003) and are based on
an oil price shock which is the unconditional standard deviation of the change in the real
price of oil. In doing so, we report the impulse responses of the growth rate to both positive
and negative oil price shocks to address the issue of whether the relationship between real
output and the real price of oil is symmetric or asymmetric. Our impulse response functions
are regime-dependent, in the sense that they measure the response of the growth rate from
time t to time t + n to an oil shock at time t assuming the regime is the same from time t
to time t+ n.
As can be seen in Figure 4, the dynamic response of the real output growth rate to an

oil price shock is different in the two regimes. In particular, a positive oil price shock has
a large negative and persistent effect on real output in regime 2, but a small negative and
nonpersistent effect in regime 1. Similarly, a negative oil price shock has a large positive
and persistent effect on real output in regime 2, but almost no effect in regime 1. To assess
the statistical significance of the impulse responses reported in Figure 4, we show these
responses, together with one-standard error bands, in Figure 5 (in the case of regime 1) and
Figure 6 (in the case of regime 2). As can be seen, the negative response of the growth rate
to a positive oil price shock is statistically significant in both regimes whereas the positive
response to a negative oil price shock is statistically significant only in regime 2. On the
basis of these tests, we infer that the responses of the U.S. economy to positive and negative
oil price shocks are asymmetric.
Moreover, the impulse response functions across the two regimes are suggesting a new

asymmetry. In particular, we find that the effect of an oil price shock on the growth rate,
captured by the impulse response function, and the effect of oil price uncertainty on the
growth rate, captured by φ, are significantly larger in regime 2, suggesting that the U.S.
economy tends to be particularly vulnerable to oil price shocks prior to and during recessions.
In this regard, Kilian and Vigfusson (2017, p. 1749), in their investigation of the conditional
effects of oil price shocks during episodes of net oil price increases, argue that “the magnitude
of the conditional response is correlated with a number of indicators of macroeconomic
conditions such as consumer confidence, financial stress, the share of oil in GDP, and interest
rate expectations that may indicate a heightened vulnerability of the economy to oil price
shocks, but most of the time variation appears linked to the prior evolution of the real
price of oil.”Thus, our empirical results are not only consistent with the literature, but also
contribute to the literature, as we find that oil price uncertainty has a larger negative effect
on the growth rate at times when the economy is vulnerable to oil price shocks.
To assess how oil price uncertainty contributes to the dynamics of real economic activity,

we compare the impulse responses of real output with those impulse responses when φ is
restricted to be equal to zero. We report these constrained impulse responses, plotted as
dashed lines, in Figure 7 (in the case of regime 1) and Figure 8 (in the case of regime
2). In doing so, we also repeat the unconstrained impulse responses (from Figures 5 and 6,
respectively), plotted as solid lines, and suppress the error bands for clarity. That is, the solid
lines in Figures 7 and 8 are constructed by using the parameter estimates from our bivariate
Markov switching GARCH-in-mean VAR with the coeffi cient on oil price uncertainty in the

9



real output growth equation, φ, being unconstrained, and the dashed lines are constructed
by using the same parameter estimates but with φ constrained to zero.
As can be seen in the first panel of Figure 7, when oil price uncertainty is accounted

for, the response of real output growth to a positive oil price shock is negative and more
pronounced than when φ = 0. To put it differently, the response of real output growth to a
positive oil price shock is amplified when we allow feedback from the conditional standard
deviation of oil price changes to output growth. Also, as can be seen in the second panel
of Figure 7, when oil price uncertainty is accounted for, the response of real output growth
to a negative oil price shock is positive and less pronounced than when φ = 0. That is,
the response of real output growth to a negative oil price shock is dampened when we allow
feedback from the conditional standard deviation of oil price changes to output growth.
These results are consistent with those in Elder and Serletis (2010), and suggest that oil
price uncertainty tends to reduce the growth rate during expansions in the business cycle.
Finally, in order to quantify the dynamic response of real output to oil price shocks

and oil price uncertainty in regime 2, we plot the unconstrained and constrained impulse
responses to positive and negative oil price shocks in Figure 8, in the same fashion as those in
Figure 7 for regime 1. We find that the impulse responses of the growth rate to positive and
negative oil price shocks are almost the same irrespective of whether φ is unconstrained or
constrained to zero, suggesting that in regime 2 oil price uncertainty only has a large negative
and statistically significant effect on the growth rate on impact (since φ̂st=2 = −0.612 with
a p-value of 0.000 in Table 3). The reason for this result is the absence of the ARCH effect
in regime 2, rendering oil price uncertainty nonpersistent.

6 Expected Duration and Stability of the Two Regimes

According to Figure 3, one of the regimes (regime 2) shows up infrequently and is not
long-lasting. To quantify the persistence of each regime, we follow Hamilton (1989) and
calculate the expected duration of each regime. We find that the expected duration of
regime 1 is approximately 1/(1 − p̂11) ≈ 14.1 quarters, and that of regime 2 approximately
1/(1− p̂22) ≈ 1.5 quarters, suggesting that the economy spends most of the time in regime
1 and that the effect of oil price uncertainty on the growth rate is less severe. However,
this does not necessarily imply that the conventional (one-regime) model is enough for us
to understand the effect of oil price uncertainty on the growth rate, since the magnitude of
that effect is significantly different across the two regimes.
We believe it is important to assess the stability of the two regimes. From an economic

point of view, it would be worrying if one or both regimes are unstable, which would make
it diffi cult to interpret our findings. Note that equation (4) with 4 lags could be rewritten as

zt = B−1st Cst +

k∑
i=1

B−1st Γi,stzt−1 +B−1st Φst

√
ho,t,st +B−1st εt,st

and is equivalent to
Zt = C̃st + Γ̃stZt−1 + Φ̃st

√
ho,t,st + ε̃t,st (7)
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where

Zt =


zt
zt−1
zt−2
zt−3

 ; C̃st =


B−1st Cst

0
0
0

 ; Γ̃st =


B−1st Γ1,st B−1st Γ2,st B−1st Γ3,st B−1st Γ4,st

12 0 0 0
0 12 0 0
0 0 12 0

 ;

Φ̃st =


B−1st Φst

0
0
0

 ; ε̃t,st =


B−1st εst

0
0
0

 ; 12 =

[
1 0
0 1

]
.

The stability of system (7) is investigated based on the concept called mean-square stability,
introduced by Farmer et al. (2009) in their study of forward-looking rational expectations
Markov switching models. The mean-square stability requires that the first and second
moments of the system converge to well-defined limits as the horizon extends to infinity

lim
t→∞

E0(Zt) = µ (8)

lim
t→∞

E0

(
ZtZ

′

t

)
= Θ (9)

where (in our case) µ is an 8-vector and Θ an 8× 8 matrix. Given
√
ho,t,st and εst , system

(7) will be covariance-stationary in each regime if the eigenvalues of Γ̃st in each regime all
lie inside the unit circle. Note that system (7) is not a standard VAR, since it includes
a GARCH-in-Mean term. However, the GARCH-in-Mean term,

√
ho,t,st, is governed by

a non-explosive GARCH process, since the sum of the ARCH and GARCH effects in each
regime is well below one. Therefore, the GARCH-in-Mean term will not make the Zt process
explosive over time.
We then study the covariance-stationarity of the system in each regime to verify its

mean-square stability. The reason for studying the covariance-stationarity is that covariance-
stationarity is strictly stronger than mean-square stability. In other words, covariance-
stationarity is a suffi cient condition for mean-square stability. Therefore, we will be able
to claim that the system is mean-square stable in each regime if the eigenvalues of Γ̃st in
each regime all lie inside the unit circle. We plot the eigenvalues of Γ̃st in the two regimes on
the upper-left and upper-right panels of Figure 9. It is clear that the system is covariance-
stationary in regime 1, but not in regime 2, since there are three eigenvalues which are
outside the unit circle. It follows that the system is mean-square stable in regime 1 and
is not surely mean-square stable in regime 2. Considering the explosive impulse response
functions of regime 2 in Figure 6, we believe that regime 2 is hardly a mean-square stable
regime.
However, one should not take this as evidence that the overall system (7) is not mean-

square stable. According to Farmer et al. (2009), there are many instances in which a
system is unstable in one or more of its regimes. But as long as the explosive regime does
not show up at a high frequency, the process of Zt will converge with finite first and second
moments as in (8) and (9). According to Farmer et al. (2009), the condition for mean-square
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stability of VAR-type systems with Markov switching is documented in Costa et al. (2004),
and requires that all eigenvalues of the matrix p11Γ̃st=1 ⊗ Γ̃st=1 p21Γ̃st=2 ⊗ Γ̃st=2

p12Γ̃st=1 ⊗ Γ̃st=1 p22Γ̃st=2 ⊗ Γ̃st=2


are inside the unit circle. Note that in our case this matrix has 128 eigenvalues, and we
report them on the lower-left panel of Figure 9. We find that all of the 128 eigenvalues are
inside the unit circle. Therefore, the Zt process is mean-square stable, since the explosive
regime (regime 2) does not occur too frequently. This interpretation is also consistent with
the short expected duration of regime 2 that we reported earlier.

7 Conclusion

We investigate whether the United States economy responds negatively to oil price uncer-
tainty and whether oil price shocks exert asymmetric effects on economic activity. We use
the methodology recently introduced by Elder and Serletis (2010), but we modify it to ac-
commodate Markov regime switching in order to account for changing oil price dynamics
over the sample period. We use quarterly data, over the period from 1974:1 to 2016:3, and
present clear evidence of asymmetries, providing evidence against those macroeconomic the-
ories that predict symmetries in the relationship between real aggregate economic activity
and the real price of oil.
In the context of a bivariate, mean-square stable, Markov switching structural GARCH-

in-Mean VAR, we find that uncertainty about oil prices has a negative and statistically
significant effect on the growth rate of real output and that this effect is asymmetric over
contractions and expansions in the business cycle, being significantly larger during contrac-
tions and periods when large oil price changes occur. We also find that positive oil price
shocks have a negative and statistically significant effect on the growth rate and that this
effect is also asymmetric over contractions and expansions in economic activity, being larger
and more persistent during contractions and periods when large oil price changes occur.
Negative oil price shocks also have asymmetric effects, exerting a positive and statistically
significant effect on the growth rate only during contractions and periods when large oil
price changes occur. Finally, oil price uncertainty tends to amplify the negative dynamic
response of the growth rate to positive oil price shocks, and to dampen the positive response
to negative oil price shocks during expansions in the business cycle.
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Table 1. Parameter estimates of the structural GARCH-in-Mean VAR: 1974:Q1 - 2016:Q3

A. Conditional mean equation

B =

[
1 0

−0.002 (0.293) 1

]
; Γ1 =

[
−0.029 (0.751) −0.714 (0.635)
−0.003 (0.376) 0.327 (0.000)

]
; Γ2 =

[
−0.105 (0.234) 2.655 (0.081)

0.002 (0.474) 0.171 (0.024)

]
;

Γ3 =

[
0.012 (0.864) 2.655 (0.081)
0.002 (0.474) 0.171 (0.024)

]
; Γ4 =

[
−0.063 (0.404) 0.827 (0.553)

0.001 (0.813) 0.069 (0.345)

]
; C =

[
2.195 (0.211)
0.368 (0.013)

]
; Ψ =

[
0 0

−0.001 (0.866) 0

]

B. Conditional variance equation

d11 = 153.589 (0.000); d12 = 0.574 (0.031); d13 = 0.000;

d21 = 0.023 (0.107); d22 = 0.220 (0.000); d23 = 0.757 (0.000).

Notes: Sample period, quarterly data, 1974:Q1-2016:Q3. A coefficient of 0.000 indicates that the nonnegativity constraint is binding.
Numbers in parentheses are p-values.
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Table 2. Parameter estimates of the structural GARCH-in-Mean VAR: 1974:Q1 - 2008:Q1

A. Conditional mean equation

B =

[
1 0

0.003 (0.268) 1

]
; Γ1 =

[
0.053 (0.575) 0.005 (0.998)

−0.003 (0.320) 0.267 (0.001)

]
; Γ2 =

[
−0.126 (0.144) 1.960 (0.257)

0.002 (0.590) 0.224 (0.011)

]
;

Γ3 =

[
0.108 (0.179) −2.552 (0.112)

−0.005 (0.089) −0.095 (0.307)

]
; Γ4 =

[
−0.055 (0.541) 0.272 (0.861)
−0.000 (0.964) 0.057 (0.473)

]
; C =

[
1.318 (0.467)
0.707 (0.000)

]
; Ψ =

[
0 0

−0.017 (0.008) 0

]

B. Conditional variance equation

d11 = 191.145 (0.000); d12 = 0.070 (0.313); d13 = 0.000;

d21 = 0.018 (0.005); d22 = 0.205 (0.000); d23 = 0.778 (0.000).

Notes: Sample period, quarterly data, 1974:Q1-2008:Q1.A coefficient of 0.000 indicates that the nonnegativity constraint is binding.
Numbers in parentheses are p-values.
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Table 3. Parameter estimates of the Markov switching structural GARCH-in-Mean VAR: 1974:Q1 - 2016:Q3

A. Conditional mean equation

Bst=1 =

[
1 0

−0.003 (0.484) 1

]
; Γ1,st=1 =

[
0.183 (0.008) −0.064 (0.946)

−0.004 (0.148) 0.207 (0.000)

]
; Γ2,st=1 =

[
−0.049 (0.537) 1.295 (0.123)

0.001 (0.815) 0.040 (0.609)

]
;

Γ3,st=1 =

[
0.082 (0.158) −3.049 (0.005)

−0.004 (0.127) −0.010 (0.848)

]
; Γ4,st=1 =

[
−0.017 (0.785) 0.794 (0.336)
−0.000 (0.906) 0.045 (0.578)

]
; Cst=1 =

[
1.041 (0.508)
0.922 (0.000)

]
; Φst=1 =

[
0

−0.029 (0.037)

]
;

Bst=2 =

[
1 0

0.004 (0.000) 1

]
; Γ1,st=2 =

[
−0.496 (0.079) −2.604 (0.759)
−0.020 (0.000) 0.730 (0.000)

]
; Γ2,st=2 =

[
−0.918 (0.047) −1.338 (0.914)
−0.025 (0.000) 0.351 (0.000)

]
;

Γ3,st=2 =

[
−0.033 (0.956) 1.287 (0.918)
−0.043 (0.000) −0.019 (0.084)

]
; Γ4,st=2 =

[
−0.306 (0.320) −3.029 (0.717)
−0.013 (0.000) −0.216 (0.000)

]
; Cst=2 =

[
−6.698 (0.344)
17.490 (0.000)

]
; Φst=2 =

[
0

−0.605 (0.000)

]
.

B. Conditional variance equation

d1,st=1 = 93.181 (0.000); d2,st=1 = 0.204 (0.016); d3,st=1 = 0.000 (0.999); h∆y,st=1 = 0.370 (0.000);

d1,st=2 = 908.875 (0.000); d2,st=2 = 0.000 (0.999); d3,st=2 = 0.003 (0.627); h∆y,st=2 = 0.001 (0.000).

C. Transition matrix

P =

[
0.929 (0.000) 0.666 (0.000)
0.071 (0.001) 0.334 (0.010)

]

Notes: Sample period, quarterly data, 1974:Q1-2016:Q3. A coefficient of 0.000 indicates that the nonnegativity constraint is binding.
Numbers in parentheses are p-values.
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Figure 4. Impulse response functions for the Markov switching structural GARCH-in-Mean VAR 
 

 

 



Figure 5. Impulse response functions for the Markov switching structural GARCH-in-Mean VAR in regime 1 
 

 

 



Figure 6. Impulse response functions for the Markov switching structural GARCH-in-Mean VAR in regime 2 
 

 

 



Figure 7. Impulse response functions for the Markov switching structural GARCH-in-Mean VAR in regime 1 
 

 

 



Figure 8. Impulse response functions for the Markov switching structural GARCH-in-Mean VAR in regime 2 
 

 

 



Figure 9. Eigenvalues for the stability of the Markov switching structural GARCH-in-Mean VAR 
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