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Comment:
Efficiency of ITQs in the
Presence of Production Externalities

JOHN R. BOYCE
University of Calgary

Introduction

Professor Danielsson (2000) argues that congestion externalities are solved if indi-
vidual transferable quotas (ITQs) are introduced. This is in direct contrast to my
own research (Boyce 1992; Corollary 1, p. 399). Danielsson raises an interesting
question about how congestion externalities should be modeled. However, I argue
that my own result 1s fundamentally correct, based on the assumptions I made. Fur-
thermore, my paper defines congestion externalities 1n a manner that 1s consistent
with the literature, while Danielsson does not. In addition, the manner in which
Danielsson specifies congestion externalities 1s indistinguishable from a pecuniary
externality—thus, it is hardly surprising that he finds that ITQs simultaneously
solve both the congestion and common property externality problems.

On The Form of Congestion Externalities in a Fishery

When I think of congestion externalities, I usually have in mind something like that
which occurs in the salmon fishery in Bristol Bay, Alaska.' In the Dillingham sec-
tion of that fishery, the Alaska Department of Fish and Game prohibits fishing fur-
ther out than one mile from the mouth of the Naknek River. The fishing openings
typically occur when the tide is running in, since the fish have evolved to take ad-
vantage of this push up the river. This means that the fishermen, who use driftnets,
line up on the imaginary line one mile out. As the bay 1s not wide enough to fit all of
the fishermen simultaneously on the line, some fishermen wait in a queue while oth-
ers fish, since to set one’s net behind the front line is less productive. However,
since the tide i1s running in, a fisherman who sets his net on the line 1s immediately
pushed off the line by the tide. I once observed a six-meter long pole with a Y™ at
one end on a boat I visited. The captain told me that the pole was used to push the
net of the fisherman on the front line down into the water as the captain passed his
boat over the front line fisherman’s net with his propeller. The amount of time a boat
spends on the front line is roughly equivalent to the amount of time it takes before
the tide washes the boat in enough so that another boat can fit in front of him. This
1s wasteful, since it is optimal to not have idle boats waiting to jump into the queue,
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and since a fisherman does not get to keep his net in the water until it 1s full.

The essential feature of this queuing example is that the length of the queue de-
pends upon how many boats are on the water (and on technical features, such as
how fast the tide 1s moving and how wide the bay 1s). The number of boats on the
water i1s an input measure, not an output measure. It was in terms of inputs that |
modeled congestion externalities. This is in keeping with the literature.” However,
Danielsson models congestion in terms of outputs, not inputs. His only defense of
this is to say “it seems likely that production externalities, in the form of crowding,
can be modeled realistically by assuming that it is the sum of the activities of other
firms that matters” (2000, pp. 37-38). In equation (1), Danielsson makes it clear that
the “activities of other firms” refers to the other firm’s output.

Let me provide another example that shows why it is that inputs, not outputs,
are the correct way to model congestion externalities. Consider the case of road con-
gestion. The way in which economists have specified road congestion is to say that
as the number of cars on the road increases (i.e., as the inputs increase), the average
speed (i.e., the output) of each car decreases.’ In Danielsson’s specification, where it
is the outputs that create the congestion costs, one would conclude that the speed of
car i decreases as the speed of the other cars increases.

If inputs are the correct measure, one can specify the production function for
fisherman 7 as:

By = fix, %), (1)

where x_; = Z;’ﬂ x ;. Here, the congestion externality occurs because the production
function is assumed to have the property that f; < 0.* In addition, f; > 0 and f;, < 0 is
also assumed. If this i1s the case, then the cost of producing output equal to A; equals:

c; = min, wx; subjectto flx, x ) = h.. (2)

Let p be the Lagrange multiplier corresponding to the binding harvest constraint.
This problem has necessary conditions:

* Smith (1968, p. 413) defines a “crowding externality” to occur when an individual fisherman’s costs
(which he does not obtain [rom a production lunction) are increasing at the aggregate capital level. This
is an input definition, not an output definition. Smith (1969, p. 181) uses a similar definition, “crowding
externalities occur if the fish population is sufficiently concentrated to cause vessel congestion over the
fishing grounds and, thus, mncreased vessel operating costs for any given catch.” Brown (1974, p. 1635)
also defines congestion externalities as arising from inputs “defined in terms of boats in the case of the
fishery, number and location of wells in the instance of groundwater, and hunters in the case of water-
fowl.” Clark (1980, p. 1126) defines an externality in terms of inputs; the cost to the ith fisherman in-
creases as the “effort” of the other j fisherman increases. Karpoft (1987, pp. 184—-85) defines the crowd-
ing externality in terms of an individual production function that 1s decreasing in the number ol vessels.
See also McConnell (1977).
' See Walters (1987) for a review of congestion externalities in the non-fisheries literature. Briefly, Dupuit
( 1844) was the first to discuss congestion. Pigou (1912) interpreted the waste due to congestion in roads as a
metaphor for perfect competition, thus concluding that perfect competition is wasteful. Knight (1924) was
the first to point out that private ownership of roads would not result in the congestion externality problem
identified by Pigou, since private owners would have an incentive to charge users a competitive price for ac-
cess to the road. Gordon (1954) was essentially applving Kmight’s road congestion model to a hishery,
Danielsson’s claim 1s, 1n spirit, similar to Knight’s. However, the difference between the simple road con-
gestion problem and congestion in a fishery is that in a fishery more variables are endogenous. In the sim-
plest road congestion problem (homogeneous cars each traveling the same distance), the only issue is the number
of cars on the road. In a fishery, the endogenous variables include the number of fishermen, the amount of
mputs used by each fisherman, and the length of the season. If there were two types of vehicles, say passen-
ger cars and semi-trucks, a single price is not sulTicient to resolve the congestion externalities problem.
* Throughout, 1 use the notation that /|, = df{x, x ;)/dx,, and f; = Of(x,. x . Mdx ,, where the subscript refers
to the argument order.
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w = Mfll{xh ‘x—f) - I"::':- and ha’ _I{Ii! I—i] = 0. {3)

The interpretation of p 1s that it 1s the marginal cost of the constraint that the harvest
equals /;. This model has three parameters: 4., w, and x_.. Thus, the solution to equa-
tion (2) in x] and p’ are each functions of 4, w, and x_, and the cost function ¢’ (4,
X_, w) = wx, (h;, x_, w) has the following comparative statics properties:”

cc, w ac; ; dc, —wf,
— = —> 0, = x; > 0, and = —— > 0. (4)
ﬂhr. fl laW aI_,- f|

Thus, the cost function ¢ (4, x ;, w) is increasing in each of its arguments. Notice,
however, that its arguments include the firm’s own output, but not the output of
other firms. The other firms affect firm i’s costs by the quantity of their inputs x_,,
not by the quantity of their outputs. One might think that this can be inverted using
a duality relationship to obtain a cost function that contains the output of the other
fishermen as an argument. I show 1n the next section that the form of this cost func-
tion cannot be as Danielsson specifies his cost function.

To summarize, the production relationship 1 specified vields a cost function that
has observable properties, all derived from the underlying production function.®
Danielsson has not derived the production function relationship that generates the
cost function he used. Thus, we have no check on whether or not his definition of a
production externality makes sense.

The Efficiency of ITQs in the Presence of Congestion Externalities

The Efficiency of ITOs When the Congestion Externality is of the Form h, = f(x, x_)

I now show, using a simplified version (which ignores the stock externalities) of the
model from my original paper (1992, pp. 393-6), that the result I obtained in that
paper is correct: ITQs do not solve the congestion externality problem.” In particu-
lar, I shall assume that there are three endogenous variables: the input used by each
identical fisherman, x;; the number of fishermen, N; and the length of time it takes
these fishermen to harvest the entire season quota, T.* Danielsson, in contrast, as-
sumes that only the harvest levels of each fisherman are endogenous.” Most fisheries
economists seem to believe that there are multiple margins at which rents are dissi-

* It can also be shown that the marginal cost is affected similarly:

o _ph
&, —fr " Tow x

]-ﬁ 'i {_-fu.'fl o -Jﬁz-’f'-}
i f-

® This cost function is consistent with the literature. See note 2, supra.

" The model used in my (1992) paper is more complicated because 1 was attempting to simultancously
analyze congestion and stock externalities.

® These are the same three variables that were endogenous in my original paper. It is possible to derive
the same qualitative results for a model 1n which the season length 1s not included. In that case, harvest,
h, is the season harvest, where in the specification in the text, the season harvest by lisherman, ¢, is Th,.
The issue, however, is that more than one variable is endogenous in a fishery. If only the number of fish-
ermen were the issue, then ITQs would solve both the congestion and common property externalities.
However, when more than one varnable 1s endogenous, this 15 not the case,

* 1 show below that this is not what causes the difference between our results. However, whenever there
is only one cause of both the common propertv and congestion externalities, only one instrument is
needed to solve both problems.

>0 (when /.= 0)
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pated (e.g., Wilen 1979; Townsend 1990). Thus, I stand behind my assumption that
there are multiple endogenous variables.
Let the single season profit function for an individual fisherman be specified as:

n, = Tpflx, x ;) —wx;] — k, (3)

where p 1s the exogenously determined output price, and 4; 1s a fixed-but-avoidable
cost of entry. In what follows, I shall assume that all fishermen are 1dentical, so k,=
k and f, = f for all i.

The social planner’s problem is to choose T, {x,, x5,..., x}, and N to maximize:

V=23 . (6)

subject to an aggregate harvest constraint:

@E TE ik (7)

where O is the total allowable catch for the season, and a constraint on the season
length that:

rer, (8)

Let the Lagrange multipliers be A and 1, respectively. The first-order necessary con-
ditions include:

p-AMHTIN=-1)]=w
T{p—AM[f+ (N-1)fpx] —wx} =k, (9)
N[(p—A)f—wx]=1 = 0.

In the event that T < T, 1 = 0. But this implies T(p — L)(N — 1)f;x = k, which cannot
hold since f, < 0. Therefore, the social optimum 1s characterized by the following:

. = hx _ ] o E Social Optimum. (10)
S +(N= 1) fox

T =T, TNf= O, and r(
w

Notice that the social planner’s solution explicitly accounts for the congestion exter-
nality in that the f, term appears in equation (10).

Under 1TQs, suppose each fisherman i1s given an initial quota of g, = O/N,,
where N, 1s the initial number of fishermen (say under open access). Let z; be the
quantity of quotas fisherman 7 purchases during the season, and let m be the (annual
rental) quota price, which each fisherman takes as exogenous. Then, an individual
fisherman chooses x,, z;, and 7, to maximize:

T, = TJ'[R!{(I."'-' I—r'] — 1IrJI":l':"':..-'] —mz; — ka’ {] ]}

subject to the season length constraint in equation (8) and the constraint that he har-
vests no more than the quantity of quotas he owns:
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go+ z; 2 Tfx;, x_)). (12)

Assume Nash behavior by all individuals and that each individual acts as a price-
taker in the input, output, and quota markets. Let 1, and A, be the corresponding
Lagrange multipliers. The necessary conditions include:

A, =m,

(p —m)fy =w, (13)
(p—m)f—wx;,=1,2 0.

In addition, fishermen must earn profits at least equal to the profits they could ob-

tain if they simply sold their quotas. In light of equation (12), and assuming perfect
mobility of resources, this implies:

I(p — m)f(x;, x_)) — wx)] — k; = 0. (14)

These may be rearranged to show that the symmetric ITQ equilibrium includes:
" -
T =T, TNf= @, and T(%}

J ]

k
— ITQ Equilibrium (15)

'|_.1__.|‘

While ITQs do utilize the full season length, which is socially optimal, they do not
allocate effort optimally, since the third expression differs from the corresponding
expression in equation (10). In particular, the difference is that under ITQs, the con-
gestion externality [the f, term in the third equation of (10)] does not appear in equa-
tion (15). Therefore, ITQs do not solve the congestion externality problem when the
externality problem is cast in the manner assumed in this model. Thus, my original
result is affirmed (Boyce 1992).

It 1s interesting to note that when there are no congestion externalities (so f; = 0),
the market equilibrium quota price equals A, the social value of a quota, and 1TQs
do exactly what they are intended to do—create incentives to maximize rents to the
fishery. When there are congestion externalities (f; < 0), it 1s no longer sufficient for
the quota price to equal the social value of a quota; fishermen still ignore the con-
gestion cost they impose on other fishermen under ITQs.

We can get some further intuition about this result by considering the case
where N 1s fixed and T 1s 1gnored, so that A; 1s the season harvest (rather than the
rate of harvest per unit time). In this case, the profit function for an individual fish-
erman 1s:

m = pfCx, x.) - wx, — &, (16)

Here, there is only a single choice: the harvest level of each fisherman, x,. The social
planner would choose x; to maximize the sum of the profits subject to the constraint
= . . s N . .

in equation (7), rewritten as Q = Z‘,-'—l h; . The social planner thus chooses the input
levels to satisfy: |

P=Ai—-wt (N=-1D(p-L),=0. (17)
With ITQs, the profit function in equation (16) becomes:

;= pAx, x) — wx, —mz; — k,, (18)
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with the constraint that the harvest by fisherman 7 1s less than or equal to the quotas
purchased by / plus i’s initial allocation of quotas:

z; + qo 2 flx;, x). (19}
Thus, the ITQ equilibrium is:
Ai—m= 0,and (p —m)f, —w=20,. (20)

Therefore, for m chosen such that m" = A — (p — A)(N — 1)fo/f,, the pair of externalities is
resolved by ITQs. This suggests that 1f there 1s one variable causing both externali-
ties, a single instrument (ITQs) is sufficient to resolve the externality problem.

However, if we add one even more endogenous variable (say N), ITQs will no
longer solve both the common property and congestion externality problems. Sup-
pose, for example, that N is endogenous. Then, the social planner chooses N such
that:

(p-ANf+(N-1Dfp] —wz, -k, = 0. (21)
Under ITQs, with free entry and exiting, the number of fishermen will satisfy:
(p—-m)f—wz;— k;= 0. (22)

Now, plug in the quota price, m = A — (p — AN — 1)f5/f,, and the zero-profits condi-
tion under ITQs becomes:

(2 - MU+ N=-Dpfifi] —wzi = k= 0. (23)

Thus, when there are two endogenous variables and two externalities, the single in-
strument of ITQs is not capable of simultaneously solving both externalities.

From this discussion, one might conclude that the problem with Danielsson’s
analysis 1s that he specified his model with only one endogenous variable (the har-
vest rate). However, this 1s not what yields his result, as the next section shows.

The Efficiency of ITQOs When the Congestion Externality is of the Form
¢; =clh, h)

Now, let us assume that the profits to a fisherman are of the form assumed by
Danielsson, i.e.:'"

n; = Ilph; —c(hi, hy)] = k. (24)

where ¢, = 0 and ¢,, = 0. The congestion externality occurs because ¢, = 0. The so-
cial planner’s problem is to maximize equation (6) with profits now specified as in
equation (24) subject to the constraints of equations (7) and (8). Again, letting A and

"' Danielsson uses an infinite time horizon model and makes the curious statement that, *“the choice of a
model, however 15 of no importance for the arguments n this paper™ (2000, p. 38). 1 prefer to use the in-
season model presented here to talk about ITQs, because no ITQ program allows fishermen to choose
the harvest quota, {J, in a particular year. The results of the previous section show clearly that it does
matter what the choice of the model is.
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T denote the Lagrange multipliers for these constraints, the necessary conditions in-
clude:

p—K = ¢t N-1)¢,
T[(p — L) — ¢ — (N - 1)eyh] =k, (25)
Ni(p—-Mh—-c]=120.

In the event that equation (8) 1s not binding, T = 0 implies that —T(N — 1)c, = &,
which 1s a contradiction since ¢, > 0. Therefore equation (8) 1s binding, and the
equilibrium is characterized by the following:

I'=T, TNh= Q, and T(c;/- o> k Social Optimum. (26)

Notice that the congestion effect (¢, > 0) does not actually play a role in the social
planner’s solution 1n equation (26). This 1s i1n contrast to my specification in inputs
space [see equation (10)], where the congestion effect (f; < 0) explicitly appears.

Now, consider the ITQ equilibrium. With ITQs, the profit function for an indi-
vidual fisherman 1is:

n; = Tph;, — c¢(h;, h_;)] — mz, — k;. (27)

The active fisherman chooses A, z;, and T, to maximize equation (27) subject to
equations (8) and (12), where the latter is specified in terms of A, rather than in
terms of an underlying production function. Again, letting A, and 1, denote the
Lagrange multipliers for these constraints, the necessary conditions include:

p-m= ¢, (28)
(p—-mh;—c=1,2 0,

plus the condition that profits equal the return from selling one’s quotas:

T(p — m)h;— ] = k. (29)

Again, by equation (29), it is clear that the season length constraint, equation (8), i1s
binding for each active fisherman. Thus, the symmetric ITQ equilibrium i1s given by:

T =T, TNh= Q, and T(he- ¢) = k ITQ Equilibrium. (30)

This demonstrates the point made by Danielsson that ITQs are efficient in the pres-
ence of congestion externalities when the congestion externalities are defined In
terms of the cost function ¢(h,, h ), where ¢, > 0 and ¢, > 0 is assumed. It also shows
that Danielsson’s point does not depend upon the fact that there is only one endog-
enous variable (the harvest level) in his model.

It might be thought that one can simply solve the input model of congestions 1n
the previous section for the x; as functions of the harvest levels, e.g., x; = g(h, h_),
and substitute these into the objective function to obtain a cost function with the
properties that ¢, = 0 and ¢, = 0. However, while it is apparently possible to solve
for the inputs 1n terms of the outputs, 1t does not follow that the derived cost func-
tion would have the properties assumed by Danielsson. If this were true, then the
qualitative properties of the models would be identical. I have shown here that the
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qualitative properties are not the same. Therefore, the duality theorems for an indi-
vidual price-taking firm do not aggregate to an entire industry.

Note also that the equilibrium quota price 1s rather curious: m = A + (N — 1)c, = A,
since ¢, > (. This means that the equilibrium price no longer reflects the social value
of an additional harvest quota (recall that A 1s equal to the value of another unit of
quota, already taking account of the congestion externality). This i1s a strange result,
and it goes without explanation or discussion by Danielsson.

The Efficiency of ITQs When the Congestion Externality is of the Form
¢(h;, N)

To further emphasize my point that it i1s inputs that matter for congestion externali-
ties, consider a cost function that has been used by Smith (1968, 1969), Brown
(1974), and Karpoff (1987). Assume that profits to a fisherman are of the following
form (where ¢, = 0 1s the congestion externality):

n, = T[ph— é(h, N» k] (31)

The social planner’s problem is to maximize equation (6) with profits now specified
as 1n equation (31) subject to the constraints in equations (7) and (8). Again, letting
A and t denote the Lagrange multipliers for these constraints, the necessary condi-
tions include:

p— A= ¢
(p - Mh— & N&) =k (32)
N[(p - WMh—- ¢l =t > 0.

As 1n the previous model, if the season length constraint, equation (8), is not bind-
ing, it implies T = 0, but this results in —TN¢é,= k, which is a contradiction. Thus, the
social planner’s solution includes:

T =T, TNf= Q, and T|hé—- & Né&] = k Social Optimum. (33)
Under ITQs, fishermen choose 4, z,, and T. to maximize:
n; = T|ph— é(h, N)| — mz,— k. (34)

Subject to the constraints in equations (8) and (12), with the latter appropriately speci-
fied with #; instead of the production function f, the necessary conditions include:

p—m= ¢ (35)

plus the condition that profits equal the return from selling one’s quotas:

T(p = mh= ¢ = k. (36)
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These may be combined to show that the symmetric ITQ equilibrium includes
the following:

T =T, TNhk= Q, and T|é}# ¢é| = k, ITQ Equilibrium. (37)

Again, the ITQ equilibrium and the social planner’s conditions do not match. It is
clear from equation (37) that the difference is simply that the individual fisherman
ignores the congestion externality [the Né, term in the third expression of equation
(33)]. Thus, when the cost function 1s specified in a manner that is consistent with
the congestion externality as exhibited in equation (1), the result is that ITQs do not
maximize social welfare.

Pecuniary Externalities

[ argue that Danielsson has specified his profit function such that it is indistinguishable
from a pecumiary externality. To see this, suppose that instead of a congestion externality
in the form of equation (24), it 1s assumed that price depends upon the aggregate harvest
rate per unit time; i.e., p= p(>." A ), where p' < 0, and that an individual fisherman’s
costs depend only upon that fisherman’s own output; i.e., ¢;= T(h), with ¢’ > 0 and
" > 0. Thus, there is no congestion externality as specified by Danielsson, but

there 1s a pecuniary externality. The profit of an individual fisherman is thus:

m = AT )b - ch)] - k. (38)
The social planner’s problem is to maximize:

T‘.“-’ | .I:i'

s

: ) |
Vo= TL [ pls)ds— 3, e(w =¥ oL (39)

0

subject to equations (7) and (8). The maximized values of N, A, T, and A satisfy the
following necessary conditions:

p(Nh) — L= ¢
;r{[p(mz) — W] - a} = k (40)

NM[p(Nk) = A]h - =T 2 0.

In addition, both equations (7) and (8) hold with equality. Thus, the social optimum
includes:

T =T, TNh= Q, and T[e'h — ¢] = k, Social Optimum. (41)

Now, consider the ITQ equilibrium in which each fisherman acts as a price taker in
both the quota and output markets, but chooses his own season length. In this case,
profits are:
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= Tf[f’{zj‘f’.f]hf_ E(hf}] = k= m(Th- q,) (42)

The necessary conditions for an active fisherman (one who does not sell his quotas
and retire) include:

p(Nh)—m— T =0
N{[p(Nh) — mlh — ¢} = 1= 0 ITQ Equilibrium (43)

T{[p(Nh) — mlh — ¢} = k.

These, 1n turn, are identical to equation (40) for m = A.

Thus, with a pecuniary externality but no congestion externality, ITQs solve the
common property problem. So what? In equation (24), where a congestion external-
ity of the form Danielsson uses has been specified, and equation (42), where there i1s
no congestion externality but there 1s a pecuniary externality (and where z, = Th, — g,
has been substituted out), we see that the price-taking firm’s profits have the proper-
ties that:

Ot

. ar
—— =—Te,(h,h )< 0 and —— = Tp'(Nh)h, < 0. (44)
oh_, cf

-

Thus, Danielsson’s result 1s a direct result of the fact that his specification of a
profit function with a congestion externality 1s indistinguishable in first differences
from that of a profit function with a pecuniary externality. It 1s, therefore, no sur-
prise that he finds that a single instrument, such as I'TQs, 1s sufficient to overcome
this externality.

Conclusion

There are two ways in which a congestion externality 1s resolved when ITQs are in-
troduced in a fishery. One is when there i1s only a single endogenous variable caus-
ing both the common property and congestion externalities. Here, a single instru-
ment is sufficient. The other 1s when the congestion externality is expressed in the
form of a cost function with ¢; = ¢(h., ki ;), as in Danielsson. Danielsson does not re-
view the literature on congestion externalities to see how they have been modeled
by other authors—myself excepted. His externality is certainly not the congestion
externality that has been modeled previously in either the fisheries literature or the
road congestion literature. Nor does Danielsson attempt to justify his assumptions or
to draw out the economic nature of the difference between his model and the model
considered by others and myself. Indeed, he does not show the underlying produc-
tion relationship that his cost function implies.

Danielsson claims that the congestion externality 1s due to outputs—so fisher-
man i’s costs rise as the output of other fishermen increases. The externality due to
outputs with price taking firms is a pecuniary externality, not a congestion external-
ity. True, profits to fishermen i decrease as other fishermen’s aggregate output in-
creases when there exists a pecuniary externality, but this 1s not an externality that
economists think requires fixing. Indeed, it is difficult to conceptualize the eco-
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nomic nature of the externality in Danielsson’s model. Congestion on a roadway 1s
caused by the number (or types) of cars using it—an input measure—mnot by the
speed of the cars—the output measure. In Danielsson’s specification, it 1s more
costly to drive fast when other drivers are going fast. It seems much more likely that
it 1s more costly to drive fast when other drivers are going slowly. Similarly, conges-
tion in a fishery 1s due to inputs, not outputs. A fisherman catches fewer fish be-
cause he has to elbow his way through all of the other fishermen to get a chance to
fish—not because the other fishermen are catching all the fish.
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