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Abstract
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1 Introduction

Coase (1972) observed that a durable good monopolist (DGM) has an incentive to practice

intertemporal price discrimination because the loss in the asset value of units of the durable

good sold in earlier periods is borne not by the monopolist in the current period when she

lowers price and increases sales, but by the purchasers from earlier periods. Because the

DGM cannot commit not to practice intertemporal price discrimination Coase conjectured

that consumers have an incentive to engage in intertemporal substitution, and that if the

costs of waiting vanished rational expectations of lower prices would force the DGM to

produce the competitive quantity at the competitive price “in the twinkling of an eye”: the

DGM would not have any market power.

Bulow (1982) was one of the first formal investigations of the Coase conjecture.1 Bulow

considered a two-period model with rational consumers and a profit maximizing DGM, each

of whom recognizes that the DGM faces the time inconsistency problem highlighted by Coase.

Bulow found that these expectations reduced the DGM’s profits relative to the case where it

could commit to future prices, but that profits were still positive even in the no-commitment

case, suggesting that the two-period model gave the durable goods monopolist some degree

of commitment relative to the case considered by Coase. Bulow also conjectured that a

capacity constraint, which restricted the quantity the DGM could sell in any period, would

provide it with a credible mechanism whereby it might regain some of its market power, since

it reduced the ability of consumers to avoid high first period prices by waiting to purchase

the good. Yet in discussing the effect of a capacity constraint, Bulow used not his two-period

model, but instead an infinite-horizon model with an infinitely durable good and with the

period of commitment shrinking to zero.

The rationale for why a capacity constraint should restore some of the DGM’s monopoly

power in a two-period model is that a binding capacity constraint in the second period

should reduce the ability of consumers to engage in intertemporal substitution by waiting

to purchase when prices fall in the second period. Yet, the two period models that followed

Bulow have concluded that for rationing to increase the DGM profits, rationing must be

inefficient—i.e., there is some possibility that those with the highest willingness-to-pay will

not have their demands met. van Cayseele (1991) showed that if the monopolist can limit

1The Coase Conjecture has been formalized and its robustness assessed in a series of papers, including
Stokey (1981), who was responding to a working paper version of the Bulow model, Bond and Samuelson
(1984), Gul, Sonneschein, and Wilson (1986), Kahn (1986), Ausubel and Deneckere (1989), Bagnoli, Salant,
and Swierzbinski (1989), Dudey (1995), and McAfee and Wiseman (2008).
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its output below the quantity that would be demanded in the second period, consumers

would anticipate that they might not be able to buy in the second period, which reduces the

willingness of some high-valued consumers to engage in intertemporal substitution. Similarly,

Denicolo and Garella (1999) show that a binding capacity constraint in the first period of a

two-period model when there is random rationing results in some consumers with a higher

willingness to pay remaining in the market in the second period. As a result there is less

incentive for the monopolist to reduce its price in the second period, mitigating the incentive

for high willingness to pay consumers to substitute intertemporally. However, with efficient

rationing, a capacity constraint is not profitable in either the models of van Cayseele or

Denicolo and Garella.

This paper makes three main contributions. The first is to show that in his two-period

model Bulow implicitly changed the nature of the economic asset under consideration, and as

a result a capacity constraint can never increase the profits of the DGM. Bulow’s specification

for demand, which is used by others, including Tirole (1988, p. 81) and other textbook

treatments (e.g., Church and Ware (2000, pp. 135-138)), involves an inconsistent treatment

of the durable good. In Bulow’s specification, a consumer who purchases the good in the

first period owns an economic asset that produces benefits for two periods. But a consumer

who purchases the good in the second period owns an asset that produces benefits only in

that second period. Thus the good purchased in the second period in Bulow’s specification

differs fundamentally from the good purchased in the first period and waiting to purchase

the good until the second period means forgoing half the (undiscounted) flow of use benefits.

This makes the threat of intertemporal substitution by consumers particularly effective since

their willingness to pay is substantially reduced: a sale in the second period will be much

less profitable than the same unit sold to the same consumer in the first period. As a result,

in Bulow’s specification, output in period one is greater than output in period two for all

discount factors δ and a capacity constraint is unprofitable because its effect is to reduce

sales in the first period, which is precisely when consumers are willing to pay the most for

the good.

In contrast, we consider a model in which the durability of the of the durable good

is consistent—i.e., whether purchased in the first period or the second period the good’s

durability is the same. With consistent durability, we show, similar to Bulow, that for a

discount factor greater than zero and less than one, the non-capacity constrained subgame

perfect Nash equilibrium profits are less than static monopoly profits. The reason is that

Coasian expectations and the buyers’ intertemporal Hotelling constraint—that at the margin
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they must be indifferent to the period of purchase—results in intertemporal substitution by

consumers that disciplines the market power of the DGM.2 Unlike Bulow’s specification,

however, with consistent durability the reduction in profits is increasing in the discount

factor until it equals a critical value, at which point the effect of Coasian expectations and

the Hotelling constraint become less and less effective at reducing the market power of the

DGM. Above this critical level (δ > 2/3) the DGM finds it more and more profitable for

consumers to substitute consumption to the second period and when the discount factor is

above this critical value, second period production is greater than first period production

(which never happens in Bulow’s specification). Indeed when the discount factor equals 1,

the DGM only sells the static monopoly output in the second period—and nothing in the

first period— and earns “full”, that is static, monopoly profits. This in itself is surprising,

since the closer the discount factor is to one, the greater the incentive of the customers of

the DGM to substitute intertemporally. But as the discount factor rises, so to increases the

willingness of the DGM to wait consistent durability. In Bulow’s specification, in contrast,

intertemporal substitution reduces the profits of the DGM even when the discount factor is

one, since the good sold in the second period is less durable than the good sold in the first

period.

Our second contribution is to show when, and how, a capacity constraint can raise prof-

its for a DGM when rationing is efficient.3 With consistent durability, absent a capacity

constraint, second period production in the subgame perfect Nash equilibrium exceeds first

period production when the common discount factor is sufficiently high (δ > 2/3). A bind-

ing capacity constraint therefore raises consumers’ expectations of the second period price (a

Coase effect) and hence, via the Hotelling no-arbitrage condition, raises the profit maximiz-

ing price in the first period. Indeed, this effect on expectations introduces a discontinuity in

the profit function when the capacity constraint just binds: reductions in first period output

no longer result in an increase in second period output and a decrease in second period

price.4 As a result the DGM reduces its first period output and both the first and second

period prices rise. As the capacity constraint tightens, expectations of second period sales

are reduced increasing first period sales, while second period price also rises in response to

2Hörner and Kamien (2004) first drew the analogy to the intertemporal no-arbitrage constraint faced by
Coase’s (1972) DGM and the intertemporal no-arbitrage constraint faced by Hotelling’s (1931) monopsony
buyer of an exhaustible resource.

3In the models of both van Cayseele (1991) and Denicolo and Garella (1999) durability is consistent.
4The change in profits from an increase in first period output is zero; but with the capacity constraint,

the change in profits from an increase in first period output is negative, evaluated at the level of capacity
that just binds in the second period.
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the decrease in first period sales. So even though output and profits in the second period

are reduced, total profits increase.5

Perhaps more surprisingly, continuing to tighten the capacity constraint is profitable

even when the constraint binds in both periods, at least for sufficiently high discount factors

(δ > 1/2). Decreasing capacity decreases output in both periods. As a result, the increase

in second period price from decreasing capacity is much larger, which by the Hotelling no-

arbitrage constraint results in a much higher first period price as well. Hence there is greater

incentive to reduce capacity when it binds in both periods. Indeed, while decreasing output

in the first period has a negative effect on profits, decreasing capacity—which results in a

decrease in output in both periods—has a positive effect on profits. Therefore, relative to

binding only in the first period, the effect of a binding constraint in both periods is to reverse

the marginal profitability of capacity relative to the marginal profitability of output in the

first period.6 As the constraint tightens, the effect is to raise price in both periods, thereby

increasing profits. Eventually, however, the opportunity cost of reducing sales in the first

period becomes too large and further reductions in capacity no longer increase profits. This

opportunity cost is decreasing in the discount factor: giving up profits on first period units

to increase market power in the second period and increase the price in the first period is

not profitable for small discount factors.

Our third contribution is to show why a capacity constraint which induces efficient ra-

tioning works to increase the profits of the DGM when the first period output exceeds sec-

ond period output in the non-capacity constrained equilibrium. Denicolo and Garella (1999)

showed that when a capacity constraint binds only on first period output, that it cannot

increase the profits to the DGM. In their model, a necessary, but not sufficient condition for

a capacity constraint to be profitable is that the DGM chooses in the second period to sell

only to consumers who were (inefficiently) rationed in the first period, ensuring that second

period prices are higher than first period prices. We too find that when efficient rationing

by a capacity constraint binds only in the first period that the DGM is made worse off with

a capacity constraint. We show, however, that a binding capacity constraint in the first pe-

riod can be profitable with efficient rationing, but only if it also binds in the second period

and if the discount factor is sufficiently high (δ > 1/2). For a binding capacity constraint

5Notice that a DGM may have something to gain from rationing in the second period because of the
effect on first period profits, contrary to the assertion by Denicolo and Garella “that in the second and final
period the monopolist has nothing to gain from rationing.” (1999, p. 46)

6The change in profits from an increase in first period output is positive; but the change in profits from
an increase in first period capacity is negative, evaluated at the level of capacity that just binds in both the
first and second periods.
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in the first period to be profitable it does not need to result in second period prices being

higher than first period prices. Instead its effect works at the margin, a binding constraint

in both periods raises expectations of higher prices in the second period, which raises prices

in the first period, leading to higher profits even though sales in both periods are decreased.

We also show that there is always a profitable capacity constraint that binds only in the

second period when the discount factor is sufficiently large (δ > 2/3) that output in the

second period exceeds output in the first period in the unconstrained subgame Perfect Nash

equilibrium.7 Neither of these cases were considered by Denicolo and Garella.

Finally, our finding that the magnitude of the discount factor matters is itself interesting.

In both Bulow and McAfee and Wiseman (2008), who prove Bulow’s conjecture regarding

the effect of a capacity constraint in an infinite horizon game, the only issue relating to the

magnitude of the discount factor is whether it is greater than zero. McAfee and Wiseman

show that by limiting its investment in capacity at the beginning of the game, the monopolist

can preserve its market power and some, but not all, of the “static” monopoly profits, as

the period of commitment goes to zero. A low level of capacity acts as a commitment

device ensuring that prices are high, output “dribbles” out, and prices fall slowly, thereby

inducing high value consumers to buy early. They also show, however, that even if the

monopolist could augment its capacity, it would not because the size of the market remaining

shrinks over time. When the period of commitment goes to zero, a capacity constraint works

for any positive discount rate. If the period of commitment is bounded away from zero,

however, the magnitude of the discount factor matters since whether production is rising

or falling over time depends on the discount factor, as does the profitability of a capacity

constraint. Economic examples where the period of commitment is bounded away from

zero in durable goods are the vintages of automobiles and appliances where new models are

released annually. Thus, the question of how the discount factors affects the profitability of

capacity constraints in these situations is interesting, as such questions do not arise when

the period of commitment goes to zero.

The remainder of the paper is organized as follows. Section 2 shows how the nature of

the asset differs between the Bulow formulation and a formulation in which the durability

of the good is independent of the period in which it is purchased. Section 3 derives the

7Our result that a binding capacity constraint in the second period increases profits for sufficiently large
discount factors is similar to the result of van Cayseele, though he assumes no discounting and that in the
second period at least some consumers with a low valuation are able to purchase before any high valuation
types that did not buy in the first period. As with the analysis of Denicolo and Garella, we show that a
capacity constraint can be profitable when rationing is efficient because of its effect on expectations at the
margin.
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no-commitment equilibrium in a DGM model that nests both the consistent durability and

the Bulow declining durability assumptions. Section 4 derives the main results regarding

capacity constraints in the DGM model. Section 5 concludes.

2 Consumer Preferences and Durability

2.1 Identifying the Inconsistency in Bulow’s Specification

A buyer who buys an infinitely durable good such as land purchases an asset which generates

a flow of utility over the life of the asset. Let D(St) denote the one period current value of

the flow of marginal utility from a stock of size St =
∑t

s=1 qs of the durable good, where

qt is the additional quantity purchased in each period and S0 = 0. Naturally, D(St) is

decreasing in cumulative purchases, St. With a one period ahead discount factor of δ, and

prices pt, t = 1, 2, 3, . . . , the consumer chooses qt, t = 1, 2, 3, . . . to maximize

V ∞B =
∞∑
t=1

δt−1
[∫ St

St−1

D(z)

1− δ
dz − ptqt

]
. (1)

Taking the prices as given, the consumer maximization implies that the following no-arbitrage

equation must hold along the equilibrium path:

pt = D(St) + δpt+1, t = 1, 2, 3, . . . (2)

This says that the price the consumer is willing to pay in period t is the sum of the flow of

marginal utility over period t to t+ 1, D(St), plus the discounted value of what he is willing

to pay in period t+ 1, δpt+1.
8

Suppose, instead, that what is finite is the number of periods in which purchases can be

made as in Bulow (1982). We still assume, however, that the utility earned by purchasing

8The continuous time equivalent in Hörner and Kamien (2004) is:

ṗt = r

[
pt −

D(St)

r

]
≤ 0.

Observe that written in this form the no-arbitrage relationship implies that the difference between the price
and the present value of the stream of future utility the consumer earns falls at the rate of interest since
D(St)/r ≥ pt to induce the consumer to purchase.
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the durable good is an infinite discounted stream. Then for two purchase periods,

V 2
B =

∫ q1

0

D(z)

1− δ
dz − p1q1 + δ

[∫ q1+q2

q1

D(z)

1− δ
dz − p2q2

]
. (3)

The optimal choices for q1 and q2 imply the following:

p2 =
D(q1 + q2)

1− δ
and p1 = D(q1) + δp2. (4)

It is clear that the no-arbitrage equation, p1 = D(q1) + δp2, is of the same form as (2). The

introduction of a terminal period introduces a second condition which pins down inverse

demand in the final period: p2 = D(q1 + q2)/(1− δ). This is simply the present value, at the

margin, of the flow of services of the infinitely durable good.

Bulow (1982), however, does not use (4), but instead

p2 = D(q1 + q2), and p1 = D(q1) + δp2. (5)

The difference is that the price of the durable good in the second period is based only on

the flow of services provided in the second period. Hence Bulow’s formulation assumes not

only that the number of purchase periods is finite, but also that the durability of the good

varied depending upon the period in which it was purchased. Specifically, his two-period

model assumed that the good provided two periods of utility if purchased in the first period

but only one period of utility if purchased in the second period. Thus Bulow’s consumer

implicitly maximized:

V̂ 2
B =

∫ q1

0

(1 + δ)D(z)dz − p1q1 + δ

[∫ q1+q2

q1

D(z)dz − p2q2
]
,

where the V̂ 2
B notation is used to distinguish between the case where the good is infinitely

durable in each period and where it is finitely durable of decreasing lengths in each succes-

sive period. So what differs in Bulow’s specification is not the intertemporal no-arbitrage

equation, which is of the form of (2), but the valuation the consumer places on the good

purchased in the last period.
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2.2 A More General Formulation

In this section we introduce a formulation that nests consistent durability and Bulow’s de-

clining durability. We assume the utility of the single forward-looking, non-strategic buyer

is given by:

V 2
B = θ1

∫ q1

0

D(S)dS − p1q1 + δ

[
θ2

∫ q1+q2

q1

D(S)dS − p2q2
]
, (6)

where qi and pi are purchases and price in period i = 1, 2, and D(S) is the marginal benefit

of consumption given total purchases S. The parameters θ1 ≥ θ2 measure the durability

of the good purchased in period t. We assume θ1 ≥ 1 + δ and θ2 ≥ 1. When θt = 1,

the good provides services in only one period; when θt > 1 the good generates utility flow

in some periods that follow. If the durability of the good is consistent through time, we

write θ1 = θ2 = θ. This nests Bulow’s specification, where θ1 = 1 + δ and θ2 = 1, the

infinitely durable specification, where θ1 = θ2 = 1/(1 − δ), and other consistent durability

specifications such as a good that produces benefits for two periods, θ1 = θ2 = 1 + δ.

From (6), inverse demand for purchases in first and second periods are:

p1 = θ1D(q1) + δθ2(D(q1 + q2)−D(q1)) (7)

and

p2 = θ2D(q1 + q2). (8)

Willingness to pay in the second period equals the marginal benefit in the second period

scaled by durability. Willingness to pay in the first period equals the marginal benefit in the

first period scaled by durability less the capital loss in the second period if price falls.

Combining (7) and (8) we have

δ[θ2D(q1)− p2] = [θ1D(q1)− p1]. (9)

This is the Hotelling no-arbitrage condition for the buyer. It requires that the surplus at the

margin in the first period equal the discounted surplus if the marginal unit were purchased

in the second period. Expectations regarding p2 are therefore a key determinant of demand

in the first period, which is the key insight of the Coase Conjecture.
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3 Equilibrium in the Two-Period DGM without Ca-

pacity Constraints

Following Bulow, assume that the DGM values a dollar in the future at the same rate, δ, as

the buyer and faces zero marginal cost of production. The DGM’s profits are thus

π = p1q1 + δp2q2, (10)

where p1 is given by (7) and p2 is given by (8).

3.1 Full Commitment Nash Equilibrium

If the DGM could commit to an output path, then profit maximization of (10) involves

simultaneously solving for q1 and q2 subject to the constraints that prices satisfy the no-

arbitrage equations (7) and (8). The first-order-necessary conditions for the second period

is

θ2δ [D(q1 + q2) + (q1 + q2)D
′(q1 + q2)] = 0. (11)

Assuming commitment, in the second period, the DGM sets marginal revenue from total

production equal to marginal cost (which, again, is zero). The profit maximizing condition

for first period output is:

(θ1 − δθ2) [D(q1) + q1D
′(q1)] = −θ2δ [D(q1 + q2) + (q1 + q2)D

′(q1 + q2)] (12)

[D(q1) + q1D
′(q1)] = 0,

where the second equality uses (11). For both (12) and (11) to hold qc2 = 0, where the

‘c’ superscript denotes the full-commitment equilibrium. Thus under full commitment the

DGM produces the static monopoly output (given by (12)) in the first period and nothing

in the second period.

3.2 No-Commitment Subgame Perfect Nash Equilibrium

In the second period in the subgame perfect Nash equilibrium, the DGM takes as given its

sales in the first period. Since the consumer owns the output q1 purchased in the first period,
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the DGM chooses q2 to maximize its second period sales profits:

π2 = p2q2, (13)

where p2 is given by (8). Optimal second period sales q∗2 maximize (13), which implies setting

marginal revenue equal to marginal cost (which is zero by assumption):

D(q1 + q∗2) + q∗2D
′(q1 + q∗2) = 0. (14)

In the no-commitment equilibrium, the DGM expands output in the second period to set

marginal revenue based on the second period residual demand equal to marginal cost. In

doing so she recognizes that the loss on inframarginal units on first period sales is borne by

purchasers in the first period. The loss on inframarginal units for the DGM in the second

period is only q2D
′(q1+q2), not (q1+q2)D

′(q1+q2) as in the condition under full-commitment,

(11).

If second period marginal revenue is decreasing in second period output and first and

second period output are strategic substitutes (both of which we assume), then it follows

that dq∗2/dq1 ∈ (−1, 0).9 Thus while the profit maximizing second period output is decreasing

in first period output, the decrease in second period output from an increase of one unit of

first period output is less than one and total output rises.

In the first period in the no-commitment subgame perfect Nash equilibrium the DGM

forecasts that it will profit maximize in the second period and sell q∗2(q1) defined by (14).

First period profits to be maximized by choice of q1 are

π = p1q1 + δθ2D[q1 + q∗2(q1)]q
∗
2(q1),

where D[q1+q∗2(q1)]q
∗
2(q1) is maximized second period profits and the optimization is subject

9Formally we assume d2π2/dq
2
2 < 0 and d2π2/dq2dq1 < 0. Outputs in the two periods will be strategic

substitutes if the reduction in marginal profit from the fall in the price in the second period from an increase
in q1 (and hence the gain from the marginal unit) exceeds the effect on marginal profit of any decrease in
the loss on inframarginal units. As long as demand is not too convex this will be true.
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to first period inverse demand, (7). Equilibrium first period quantity q∗1 solves:

(θ1 − δθ2) [D(q∗1) + q∗1D
′(q∗1)] = −δθ2 [D(q∗1 + q∗2) + (q∗1 + q∗2)D′(q∗1 + q∗2)]

[
1 +

dq∗2
dq1

]
= −δθ2q∗1D′(q∗1 + q∗2)

[
1 +

dq∗2
dq1

]
, (15)

where the second equality uses the envelope theorem to account for how the DGM behaves

in the second period from (14). The effect q1 has upon second period profits takes account

of the effect an increase in q1 has upon q∗2(q1) and incorporates consumers’ expectations of

q∗2.

We refer to the term on the right-hand-side of (15) as the Coaseian expectations effect.

It reflects an extra negative effect of expanding first period output in the no commitment (or

subgame perfect Nash equilibrium) relative to the full commitment equilibrium (compare

(15) to (12)). It equals the reduction in the second period price at t = 2 from an expansion

in first period output discounted back times first period output. Thus it reflects a lower price

in the first period due to the intertemporal arbitrage condition (Hotelling) when consumers

expect total output in the second period to increase and hence reduce the second period price

(Coase). As a result first period output in the no-commitment equilibrium is less than in the

full-commitment equilibrium; second period output is greater; and so too is total output.

3.3 Linear Inverse Demand and Consistent Durability

Table 1 shows the equilibrium prices, profits, and outputs for the no-commitment and full-

commitment equilibrium assuming linear inverse demand for services given by D(S) = α −
βS, where α and β are each positive parameters, for the general case, θ1 ≥ θ2, the case of

consistent durability, θ1 = θ2 = θ, and for Bulow’s specification, θ1 = 1 + δ and θ2 = 1.10

3.3.1 Full-Commitment vs. No-Commitment

As expected based on the comparison between (12) and (15) output is lower in the first

period, higher in the second period, and total output higher under no-commitment relative

to full-commitment. First period price is lower under the no-commitment equilibrium for

10Denicolo and Garella’s (1999) specification with common discount factors yields profits in the no-
commitment equilibrium which equal the consistent durability case if α = β = θ = 1. If instead of a
continuum of consumers with unit demand for the good and willingness to pay of v distributed uniformly
over the interval [0, 1], there was single buyer with v(St) = θ(α− βSt) the equilibrium expressions in Table
1 for consistent durability would also characterize the no-commitment equilibrium to Denicolo and Garella.
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Full-Commitment No-Commitment Subgame Perfect Nash Equilibrium
Nash Equilibrium In General Consistent Durability Bulow

θ1 ≥ θ2 ≥ 1 θ1 ≥ θ2 ≥ 1 θ1 = θ2 ≡ θ > 1 θ1 = 1 + δ, θ2 = 1

qc1 = α
2β

q∗1 = 2α(θ1−δθ2)
β(4θ1−3δθ2) q∗1 = 2α(1−δ)

β(4−3δ) q∗1 = 2α
β(4+δ)

qc2 = 0 q∗2 = α(2θ1−δθ2)
2β(4θ1−3δθ2) q∗2 = α(2−δ)

2β(4−3δ) q∗2 = α(2+δ)
2β(4+δ)

pc1 = αθ1
2

p∗1 = α(2θ1−δθ2)2
2(4θ1−3δθ2) p∗1 = αθ(2−δ)2

2(4−3δ) p∗1 = α(2+δ)2

2(4+δ)

pc2 = αθ2
2

p∗2 = θ2α(2θ1−δθ2)
2(4θ1−3δθ2) p∗2 = θα(2−δ)

2(4−3δ) p∗2 = α(2+δ)
2(4+δ)

πc = α2θ1
4β

π∗ = α2(2θ1−δθ2)2
4β(4θ1−3δθ2) π∗ = θα2(2−δ)2

4β(4−3δ) π∗ = α2(2+δ)2

4β(4+δ)

Table 1: Linear Equilibrium.

all δ > 0, though at δ = 0 they are equal since both maximize first-period static monopoly

profits. The second period price is always higher under the full-commitment equilibrium

since the DGM shuts down sales in the second period.

Full-commitment equilibrium profits are greater than the no-commitment equilibrium

profits, provided 0 < δ < 1 since

πc − π∗ =
α2δθ(1− δ)
4β(4− 3δ)

> 0. (16)

The reason is the ability and willingness of consumers to engage in intertemporal substitution.

3.3.2 Consistent Durability

It is interesting to see how the effectiveness of intertemporal substitution to reduce the

market power of the DGM depends on the discount factor. We consider this for the case of

consistent durability, i.e., θ1 = θ2. For δ = 0 or δ = 1 the two profit levels are identical.

When δ = 0, neither consumers nor the DGM care about the future. Thus, the DGM chooses

the static monopoly equilibrium in the first period in both the full- and no-commitment

equilibria. When δ = 1, both consumers and the DGM are infinitely patient. Thus, in the

no-commitment equilibrium, the DGM sets first period output at zero and then chooses the
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static monopoly equilibrium in the second period. It is easy to show that (16) is concave

in δ, increasing in δ for δ < 2/3, and decreasing in δ > 2/3. Similarly, p∗1 is convex in the

discount factor, falling as it rises to 2/3, then rising with the discount factor for discount

factors greater than 2/3.

Coasian expectations and buyers’ intertemporal Hotelling constraint—that at the margin

they must be indifferent to the period of purchase—results in intertemporal substitution

by consumers that disciplines the market power of the DGM. The reduction in profits is

increasing in the discount factor until the discount factor equals its critical value of 2/3, at

which point the effect of Coasian expectations and the Hotelling constraint become less and

less effective at reducing the market power of the DGM. Above this critical level the DGM

finds it more and more profitable for consumers to substitute consumption to the second

period. Indeed when the discount factor equals 1, the DGM only sells in the second period

and earns “full” monopoly profits.

Table 1 also shows the difference between the SPNE with consistent durability and Bu-

low’s specification. In Bulow’s specification, the DGM is able to obtain the full-commitment

profit level only when δ = 0. This is because when δ = 1, the DGM in Bulow’s specification

receives higher profits at the static monopoly equilibrium in the first period than in the

second period, since demand is for a good that provides greater services in the first period.

Comparing q∗1 with q∗2 for the consistent durability case shows that11

q∗2 > q∗1 if, and only if, δ >
2

3
≡ δ̂. (17)

For the Bulow assumptions, however, the critical value is δ̂ = 2, which implies that there is

no value of δ ∈ [0, 1] such that q∗2 > q∗1. This is not surprising: it is never in the interest

of the DGM to have sales occur in the second period since willingness to pay in the second

period is based only on a single period’s worth of services, not two periods as in the first

period.

11In the general case, δ̂ = 2θ1/3θ2 ≥ 2/3.
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4 Effect of a Capacity Constraint on DGM Profits in

the No-Commitment Equilibrium

Now, let turn to the central question of the paper: Under what circumstances can a capacity

constraint on sales restore—at least partially—the market power of the DGM in the no-

commitment equilibrium? A capacity constraint places an upper bound on how much can

be sold in each period.12 The timing of the game is identical to the unconstrained no-

commitment game, except that now there exists an initial stage in which the DGM chooses its

capacity. We assume that capacity cannot be subsequently altered and explore the incentives

of the DGM to adopt a binding capacity constraint, i.e., one that restricts its production

below the no commitment equilibrium output in at least one period.

4.1 Effect of A Capacity Constraint when Output Is Increasing in

the No-Commitment Equilibrium: q∗2 > q∗1

We begin with the case where the second period output is greater than the first period

output. This case seems most likely to result in a capacity constraint increasing profits

because it most obviously severs the ability of consumers to avoid paying the higher first

period price by restricting sales in the second period and hence reduces their ability and

willingness to engage in intertemporal substitution.

Let KA denote the value of capacity such that the constraint just binds in the second

period: KA = q∗2. For values of K > KA, the capacity constraint does not bind. When K ≤
KA, however, the capacity constraint binds on second period output. Since the constraint

binds in the second period, second period price and profits are

p2(K) = θ2D(q1 +K) and π2(K) = θ2D(q1 +K)K when K ≤ KA.

Since q2 is restricted to being K, it follows that marginal second period profits are positive:

∂π2/∂q2 = D(q1 +K) +KD′(q1 +K) > 0.

The first period price is again given by (7), but with second period sales constrained to

equal K:

p1 = (θ1 − δθ2)D(q1) + δθ2D(q1 +K).

12Throughout, we assume that capacity (K) is costless. Making capacity costly gives the DGM an addi-
tional reason to restrict capacity, which reduces the optimal level of capacity, K∗, relative to the case where
capacity is used simply to gain a strategic advantage.
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With the capacity constraint, consumers expect a higher second period price p2 = θ2D(q1 +

K) and hence by this arbitrage constraint are willing to buy more in the first period. First

period profits are:

π = (θ1 − δθ2)D(q1) + δθ2(q1 +K)D(q1 +K). (18)

Suppose that the constraint just binds: K = KA. In that case, second period marginal

profits are just equal to zero, which implies that the first period output that maximizes (18)

at K = KA satisfies

(θ1 − δθ2) [D(q1) + q1D
′(q1)] = −δθ2q1D′(q1 +KA) (19)

Comparing (15) to (19), the right-hand side of (19) is greater than (15) because in (15) the

expression on the right-hand side of (19) is multiplied by 1 + dq∗2/dq1 which is less than

1. Hence with a binding capacity constraint in the second period the negative effect of an

increase in output in the first period from intertemporal arbitrage is larger. The reason is

that unlike the no-commitment case when there is a capacity constraint the DGM does not

reduce its output in the second period when it increases its output in the first period. Hence

the effect on second period prices from an increase in first period output is larger at K = KA

and as a result the DGM reduces first period output. The capacity constraint changes the

marginal profitability of increasing first period output at K = KA from zero to less than

zero. This implies that the DGM produces less in the first period compared to the case

where the capacity constraint does not bind, which implies he will exercise greater market

power when q2 = KA.

If the DGM produces less in the first period, it can now credibly signal that sales in the

second period will not increase. Since second period sales are unchanged at K = KA, the

reduction in first period sales means that the second period price rises (since the residual

demand has a higher intercept given that q1 is lower), and the first period price also rises since

q1 decreases and consumers expect higher prices in the second period. Thus, the moment

the constraint binds, the DGM’s profits increase, and this can be traced to the effect the

capacity constraint has on the expectations of consumers.

For K < KA, the optimal first period output, q∗1(K), given that the capacity constraint

binds second period production at q∗2(K) = K solves:

(θ1 − δθ2) [D(q∗1) + q∗1D
′(q∗1)] = −δθ2 [D(q∗1 +K) + (q∗1 +K)D′(q∗1 +K)]

= −δθ2 [D(q∗1 +K) +KD′(q∗1 +K) + q∗1D
′(q∗1 +K)] (20)
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Compared to (15), there are now two important differences in (20). First, the effect just

noted that because q∗2(K) = K, the term dq∗2/dq1, which is between zero and one in (15), is

zero in (20); second, because q∗2(K) is restricted to equal K, D(q∗1 +K) +KD′(q∗1 +K) > 0

in (20) rather than zero as in (15). This second effect means that as q1 is increased the

revenue gain from the value provided in the second period of a marginal unit in the first

period (δθ2D(q∗1 +K), see (7)), exceeds the loss to second period profits from a lower second

period price (δθ2D
′(q∗1 + K)K). This is an additional positive effect of an increase in first

period output, that offsets the negative effect associated with the change in valuation of

first period output from a lower price in the second period, the Coasian expectations effect

identified previously.13

The net effect on first period output from lowering K below KA is:

dq∗1(K)

dK
= −δθ2MR′(q∗1 +K)/ [(θ1 − δθ2)MR′(q∗1) + δθ2MR′(q∗1 +K)] ,

which is negative since the numerator is positive and the denominator negative. The nu-

merator is positive and the denominator negative because marginal revenue (MR(S) =

D(S) + SD′(S)) is decreasing in S. As K continues to be lowered, q1 rises and q2 falls until

capacity reaches a value (KB) where it just binds in both periods.

Thus, in the interval [KB, KA), as K is reduced, q∗1(K) increases and q∗2(K) = K de-

creases, which causes the equilibrium to move towards the full-commitment equilibrium in

which qc1 is equal to the quantity that maximizes static monopoly profits and in which qc2 = 0.

This suggests that profits are increasing as K decreases. That this occurs can be seen by

differentiating profits given by (18) with respect to K, taking account of how q∗1(K) is af-

fected:

dπ/dK = (∂π/∂q1)dq
∗
1(K)/dK + ∂π/∂K

= δθ2 [D(q1 +K) + (q1 +K)D′(q1 +K)] < 0, (21)

where the second equality uses the fact that q∗1(K) solves ∂π/∂q1 = 0, so that only the ∂π/∂K

term is not zero on the right-hand-side. To see that (21) is negative, observe that bringing

everything to the left-hand-side of (20) and subtracting θ1 [D(q1 +K) + (q1 +K)D′(q1 +K)]

13See discussion above after (15).
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from each side yields

(θ1 − δθ2) {[D(q1) + q1D
′(q1)]− [D(q1 +K) + (q1 +K)D′(q1 +K)]}

= −θ1 [D(q1 +K) + (q1 +K)D′(q1 +K)] .

The expression on left-hand-side is the difference between marginal revenue evaluated at q1

and at q1 + K. This difference is positive since marginal revenue is decreasing in output.

Thus, the expression on the second line must be positive, which, because θ1 ≥ θ2 ≥ 1, implies

that dπ/dK < 0 in (21).

The effect of tightening the capacity constraint is two-fold: profits rise because of the

effect that the constraint has on expectations, leading to decreased output and higher profits

in the first period.14 However, the cost of this is reduced profits in the second period.

However, for K > KB a tightening of the constraint always increases profits.

4.2 Effect of A Capacity Constraint when Output Is Decreasing

in the No-Commitment Equilibrium: q∗1 ≥ q∗2

Consider the case where δ ≤ δ̂, so that absent a capacity constraint, the no-commitment

equilibrium is characterized by q∗1 ≥ q∗2. This occurs under Bulow’s assumptions and it

occurs more generally as long as δ ≤ δ̂. When output is decreasing over time, the capacity

constraint, if it binds, first restricts sales in period one since q∗1 ≥ q∗2.

Let KC denote the value of K such that the capacity constraint just binds in the first

period, but does not bind in the second period. Thus, at KC , first period output equals KC

and second period output satisfies (14), since output in the second period is unconstrained.

Therefore, it follows that dq∗2/dq1 ∈ (−1, 0) and there is not a discontinuity in the marginal

profitability of first period output.

For K < KC , q∗1(K) = K and q∗2(K) < K implies that first period profits are

π(K) = (θ1 − δθ2)D(K)K + δθ2 (K + q∗2(K))D (K + q∗2(K)) ,

where q∗2(K) maximizes π2, given that q∗1 = K, and where p1 and p2 are given by (7) and (8),

respectively, evaluated at q1 = K. Thus, when the constraint binds in period one but not

period two, the DGM’s first-order-necessary condition in q1 implies that first period marginal

14In the linear case first period price is unchanged as K falls.
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profits are positive:

(θ1 − δθ2) [D(K) +KD′(K)] + δθ2KD
′(K + q∗2)

[
1 +

dq∗2
dq1

]
> 0,

Thus, lowering K causes profits to fall. This is the result of Denicolo and Garella (1999) that

a capacity constraint with efficient rationing that binds on first period output only makes

the DGM worse off. Here we simply note that our result means that, at least locally, a

capacity constraint makes the DGM worse off. But as K decreases, q∗2(K) increases.15 Thus,

there exists a value KD such that the constraint binds in both periods at KD: q∗1(KD) =

q∗2(KD) = KD.

4.3 Effect of a Capacity Constraint that Binds in Both Periods

When the capacity constraint binds in both periods, the DGM profits are:

π(K) = (θ1 − δθ2)D(K)K + δθ22KD(2K) for


K ≤ KB and δ > δ̂

or

K ≤ KD and δ ≤ δ̂

(22)

The capacity constraint is only binding if it is less than KB or KD (depending on whether

q∗1 > or < q∗2, which depends on whether δ > or < δ̂.

The optimal choice for capacity when the constraint binds in both periods is found by

maximizing profits, (22), with respect to K:16

∂π(K)

∂K
= (θ1 − δθ2)[D(K) +KD′(K)] + 2δθ2[D(2K) + 2KD′(2K)]. (23)

4.3.1 q∗2 > q∗1 (δ > δ̂)

For the DGM to have an incentive to reduce K below KB (23) must be negative at q∗1(K) =

KB, i.e., when the constraint just binds in both periods. Recall that the optimal first period

15Again assuming that K = q1 and q2 are strategic substitutes. See footnote 9.
16By inspection, it is clear that as K approaches zero, profits π(K) vanish, as long as the choke price D(0)

is finite. Since marginal revenue in each period is decreasing in K, for values of K such that the constraint
binds in both periods, profits are either monotonically increasing in K or there exists a value of K∗ such
that profits are maximized. Therefore, if there exists a value of K that satisfies ∂π(K)/∂K = 0 and is less
than KB or KD (whichever is relevant), then that value is unique.
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output when the constraint binds in the second period is given by (20). Evaluating (20) at

KB and rearranging:

((θ1 − δθ2) [D(KB) +KBD
′(KB)] = −δθ2 [D(2KB) + (2KB)D′(2KB)] . (24)

Substituting this into (23) gives:

∂π(K)

∂K
= δθ2[D(2K) + 2KD′(2K)] (25)

The right hand side of (25), by (24), is negative, indicating that it is profitable to reduce

K. Hence there is a jump downwards in the profitability of increasing first period output

when it increases output in both periods relative to when it only results in an increase in

output in the first period. The relevant first order condition jumps from being positive to

negative! Relative to binding only in the second period, the effect of a binding constraint

in both periods is to reverse the marginal profitability of capacity relative to the marginal

profitability of output in the first period.

The reason is that the effect of increasing capacity is to increase output in both the first

and second period: when the constraint binds only in the second period increasing capacity

only increases output in the second period. As a result when it binds in both periods the

reduction in second period price is much larger—resulting in a much lower expected price

in the second period, which through the Hotelling constraint results in a much lower first

period price. Hence there is more incentive to reduce capacity when it binds in both periods.

Indeed while decreasing output in the first period has a negative effect on profits, decreasing

capacity—which results in a decrease in output in both periods—has a positive effect on

profits. As the constraint tightens, the effect is to raise price in both periods, thereby

increasing profits. However, eventually the opportunity cost of reducing sales in the first

period becomes too large and further reductions in capacity no longer increase profits. This

opportunity cost is decreasing in the discount factor: giving up profits on first period units

to increase market power in the second period and increase the price in the first period is

not profitable for small discount factors.

To summarize: For the case where q∗2 > q∗1, i.e., δ > δ̂ we have shown that capacity

constrained profits are greater than the no commitment profits for KB < K < KA in the

previous section. In this section we have shown that profits will continue to be larger then

no commitment profits for any K∗ ≤ K ≤ KB, where K∗ solves (23). The profit maximizing

capacity is K∗ provided it is credible, i.e., less than KB. Otherwise the profit maximizing
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capacity is KB.

4.3.2 q∗1 > q∗2 (δ̂ > δ)

There are two requirements for a capacity constraint to raise profits relative to the no com-

mitment equilibrium. First it must be the case that a decrease in capacity increases profits

at KD even though for K > KD we showed above that decreases in K reduce profits. That

is, it must be demonstrated that locally the marginal effect on profits of increasing capac-

ity changes from being positive to negative. Second, for a capacity constraint to result in

greater profits than the no commitment outcome requires that the increase in profits over

the interval [K∗, KD] exceed the decrease over the interval [KD, q
∗
1]. For the DGM to have

an incentive (locally) to reduce K below KD (23) must be negative at q∗2(K) = KD, i.e.,

when the constraint just binds in both periods. Recall that the optimal second period output

when the constraint binds in the second period is given by (14). Evaluating (14) at KD and

rearranging:

D(2KD) +KDD
′(2KD) = 0. (26)

Substituting this into (23) gives:

∂π(K)

∂K
= (θ1 − δθ2)(D(KD) +KDD

′(KD)) + 2δθ2KDD
′(2KD), (27)

which could be greater or less than zero—the first term is positive, the second negative. It

will clearly be less than zero if KD > K∗.

To summarize: For the case where q∗1 > q∗2, i.e., δ < δ̂, we have shown that capacity

constrained profits are less than the no-commitment profits for KD < K < q∗1 in the previous

section. In this section we have shown that profits locally may increase for K < KD and

hence that the profit maximizing capacity K∗ may be greater than the no-commitment

profits. We confirm these results in the next section for linear inverse demand for services

in a period.

4.3.3 Linear Inverse Demand for Services

To assess when and whether KB > K∗ (KD > K∗) and whether π(K∗) > π∗ when KD > K∗,

we assume linear demand for services in a period D(Q) = α− βQ
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Setting (23) equal to zero and solving for K∗ yields

K∗ =
α(θ1 + δθ2)

2β(θ1 + 3δθ2)
. (28)

For the credibility of K∗, we have two cases to consider:

1. δ > δ̂. In order that K∗ be a feasible maximum, it must be that K∗ ≤ KB, as KB is

the value of K such that q∗1(KB) = KB when q∗2 = KB. Using (20), KB = αθ1
2β(θ1+δθ2)

.

Comparing KB to K∗ reveals that K∗ < KB so long as δ > 0 and K∗ = KB when δ = 0.

So K∗ is always credible and is the profit maximizing choice of K when δ > δ̂ or q∗2 > q∗1.

2. δ ≤ δ̂. In order that K∗ be a feasible maximum, it must be that K∗ ≤ KD, where

KD is the value of K such that q∗2(KD) = KD when q∗1 = KD. Using (14),KD = α/3β.

Comparing K∗ with KD reveals that K∗ ≤ KD if, and only if, δ > θ1/3θ2 ≡ δ̄.

There is a final step for the case of δ ≤ δ̂. We must show that the DGM profits at K∗

are greater than the no-commitment profits. Profits at K∗ are:

π(K∗) =
α2

4β

(θ1 + δθ2)
2

(θ1 + 3δθ2)
.

Comparing this with the profits in the no-commitment, no-capacity constraint case shown

in Table 1 yields the necessary and sufficient condition that must be satisfied in order that

π(K∗) > π∗:

π(K∗)− π∗ =
3α2δθ2(2δθ2 − θ1)(θ1 − δθ2)
4β(4θ1 − 3δθ2)(θ1 + 3δθ2)

> 0

This implies that π(K∗) > π∗ if, and only if, δ > δ∗ ≡ θ1/2θ2.

For π(K∗) > π∗ requires δ > δ∗ ≡ θ1/2θ2. For K∗ to be credible, i.e., less than KD,

δ > θ1/3θ2 ≡ δ̄. We can conclude that K∗ is the optimal choice of capacity for δ∗ < δ < δ̂.

Above we showed that K∗ is always credible and is the profit maximizing choice of K when

δ > δ̂ or q∗2 > q∗1.

We can summarize our results in the following proposition.
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Proposition 1. A DGM in a two-period game facing linear demand for services in a period

and having zero marginal costs of production, can increase his profits relative to the no-

commitment subgame perfect Nash equilibrium by imposing capacity constraint K∗ for any

δ > δ∗ ≡ θ1/2θ2 = 1/2 (when θ1 = θ2).

This result shows that Denicolo and Garella’s (1999) conclusion that efficient rationing

is not profitable is only true when a capacity constraint binds only in the first period. When

δ > 2/3, profits are increased by reducing capacity for all levels of capacity between K∗ and

KA, and when δ > 1/2 a restriction of capacity in both periods to K∗ yields higher profits

than the unconstrained no-commitment equilibrium. 17

4.4 Bulow and Capacity Constraint

Proposition 2. There are no values of the discount factor, δ, for which a capacity constraint

increases the DGM profits in Bulow’s two-period game facing linear demand having zero

marginal cost.

Recall that for the Bulow specification, θ1 = 1 + δ and θ2 = 1. For these values, δ∗ =

(1+δ)/2. For δ > δ∗ requires δ > 1. Thus, although Bulow correctly intuited that a capacity

constraint could increase the profits of the DGM, his two-period specification was incapable

of yielding that result.

5 Discussion and Conclusions

Bulow’s (1982) paper made two contributions to the economic theory of a durable goods

monopolist. First, in a simple and intuitive model he formalized Coase’s (1972) conjecture

that rational consumers, by waiting to make purchases because they expect future prices to

be lowered, would cause the monopolist to lose profits. Second, he provided the insight that

a capacity constraint could increase the profits of the durable goods monopolist.

But this insight did not hold in his simple two-period model. We show that this is due

to the way in which Bulow effectively altered the nature of the durable good by making it

durable only if purchased in first period. We also show that when the durability of the good

is independent of the period in which it is purchased, Bulow’s central insight about capacity

17In numeric comparisons involving the Denicolo and Garella parameters (i.e., α = β = θ = 1), the DGM
does at least as well using the optimal capacity constraint as opposed to the proportional rationing scheme
of Denicolo and Garella.
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constraints is regained, although only for sufficiently high discount factors (δ > 1/2). A

capacity constraint has this effect because it changes expectations (a Coase effect) and, via

the Hotelling no-arbitrage condition, expectations of a higher price in the second period

result in greater demand, higher prices, and thus profits in the first period. We find that

the capacity constraint changes expectations in this way both when it binds in the second

period and when it binds in both periods.

Our model shows that it is not necessary for there to be inefficient rationing when there

is a capacity constraint. The conditions under which Denicolo and Garella rejected efficient

rationing schemes hold also in the model we consider, but we find that by broadening the

nature of the capacity constraint to include a constraint that binds only in the second period

or which binds in both periods, that restricting capacity can be a strategy used by a DGM

to restore—at least in part—-its market power and monopoly profits lost from Coasian

dynamics.
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