DEPARTMENT OF MATHEMATICS AND STATISTICS
 AMAT 219 MAPLE COMPUTER ASSIGNMENT
 DUE : FRIDAY APRIL 16 / 2004.
 IF YOU HAVE A PROBLEM SEND EMAIL TO
 yousry@math.ucalgary.ca

1. Use evalf to evaluate e^{π} and π^{e} to 100 digits.
2. Use the command int to compute $\int \tan \frac{1}{3}(x) d x$. Use the command diff and simplify to verify that the answer is correct.
3. Use the function int to evaluate $\int_{0}^{\infty} \frac{\ln (x)}{\left(x^{4}+1\right)} d x$. (Answer : $-\frac{\pi^{2} \sqrt{2}}{16}$).
4. Use the function int to find the volume of the solid obtained by rotating the planar region $0 \leq y \leq \frac{1}{1+x^{12}}, \quad 0 \leq x \lessdot \infty \quad$ about the y-axis. ($\mathrm{A}: \frac{\pi^{2}}{3}$).
5. Use triple integrals and the function int to find the mass of the solid enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$, and the sphere $x^{2}+y^{2}+z^{2}=4$ with density $\delta(x, y, z)=x^{2}\left(x^{2}+y^{2}\right)$. (Answer : $-\frac{688}{105} \pi+\frac{1024}{105} \pi$).
6. A gas tank has the shape of an elliptical cylinder is mounted on a truck so that its axis is horizontal. The lengths of the major and minor axis of every cross section perpendicular to axis of cylinder are 4 meters and 2 meters respectively and the tank is 6 meter long. The operator checks how much gas is in tank by a dip stick. Let $h, 0 \leq h \leq 2$ be the depth of gas and V be its volume.
(a) Determine an expression for V as a function of h.
(b) For what value of h is the tank 3/4 full? (Answer: 1.403972753).
7. Use spherical coordinates to find the centroid of that part of the sphere $x^{2}+y^{2}+z^{2}=4$ above the plane $z=1$. (Answer : $\bar{x}=0, \bar{y}=0, \bar{z}=27 / 20)$.
8. The position of a particle in space at any time t (in seconds) is given by $x(t)=t^{\frac{3}{2}}$, $y(t)=2 t^{\frac{5}{2}}, z(t)=t^{2} \quad$ (in meters). Use the commands diff and f solve to fnd the time $t \geq 0$ when the partice first reach the speed of $300 \mathrm{~m} / \mathrm{s}$. (Answer : $t=2.171704090$ seconds).
9. Use the function plot to sketch the polar curve $r=\sin (\theta / k)$ for $\theta \in[0,2 m \pi]$ where k is the sum of the first two digits of your home phone number MINUS one.
10. Use the command plot3d to plot the surface $z=\frac{\sqrt[3]{x^{n}+y^{m}}}{1+x^{2}+y^{2}},-1 \leq x \leq 1, \quad-1 \leq y \leq 1$ where n is the sum of the first two digits of your id number and m is the sum of the last two digits of your id number PLUS one.
