DEPARTMENT OF MATHEMATICS AND STATISTICS AMAT 219 MAPLE COMPUTER ASSIGNMENT DUE : FRIDAY APRIL 16 / 2004. IF YOU HAVE A PROBLEM SEND EMAIL TO yousry@math.ucalgary.ca

- 1. Use *evalf* to evaluate e^{π} and π^{e} to 100 digits.
- 2. Use the command *int* to compute $\int \tan^{\frac{1}{3}}(x) dx$. Use the command *diff* and *simplify* to verify that the answer is correct.
- 3. Use the function *int* to evaluate $\int_0^\infty \frac{\ln(x)}{(x^4+1)} dx$. (Answer: $-\frac{\pi^2\sqrt{2}}{16}$).
- 4. Use the function *int* to find the volume of the solid obtained by rotating the planar region $0 \le y \le \frac{1}{1+x^{12}}$, $0 \le x < \infty$ about the *y*-axis. (A: $\frac{\pi^2}{3}$).
- 5. Use triple integrals and the function *int* to find the mass of the solid enclosed by the cone $z = \sqrt{x^2 + y^2}$, and the sphere $x^2 + y^2 + z^2 = 4$ with density $\delta(x, y, z) = x^2(x^2 + y^2)$. (Answer: $-\frac{688}{105}\pi + \frac{1024}{105}\pi$).
- 6. A gas tank has the shape of an elliptical cylinder is mounted on a truck so that its axis is horizontal. The lengths of the major and minor axis of every cross section perpendicular to axis of cylinder are 4 meters and 2 meters respectively and the tank is 6 meter long. The operator checks how much gas is in tank by a dip stick. Let $h, 0 \le h \le 2$ be the depth of gas and V be its volume.
 - (a) Determine an expression for V as a function of h.
 - (b) For what value of h is the tank 3/4 full? (Answer: 1.403972753).
- 7. Use spherical coordinates to find the centroid of that part of the sphere $x^2 + y^2 + z^2 = 4$ above the plane z = 1. (Answer: $\overline{x} = 0, \overline{y} = 0, \overline{z} = 27/20$).
- 8. The position of a particle in space at any time t (in seconds) is given by $x(t) = t^{\overline{2}}$, $y(t) = 2t^{\overline{2}}$, $z(t) = t^2$ (in meters). Use the commands diff and fsolve to fnd the time $t \ge 0$ when the partice first reach the speed of 300 m/s. (Answer : t = 2.171704090 seconds).
- 9. Use the function *plot* to sketch the polar curve $r = \sin(\theta/k)$ for $\theta \in [0, 2m\pi]$ where k is the sum of the first two digits of your home phone number MINUS one.
- 10. Use the command *plot3d* to plot the surface $z = \frac{\sqrt[3]{x^n + y^m}}{1 + x^2 + y^2}$, $-1 \le x \le 1$, $-1 \le y \le 1$ where *n* is the sum of the first two digits of your id number and *m* is the sum of the last two digits of your id number PLUS one.