AMAT 219 PRACTICE SHEET \#5

1. Find $\iint_{R} x^{2} d A$ where R is the rectangular region described by $-1 \leq$ $x \leq 1,0 \leq y \leq 3$
2. Find $\iint_{R} x y d A$ where R is the rectangular region enclosed by $x=0, x=$ $2, y=0$, and $y=1$.
3. Find $\iint_{D} \cos (x+2 y) d A$ where D is the rectangular region described by $0 \leq x \leq \frac{\pi}{2}, 0 \leq y \leq \frac{\pi}{4}$.
4. Find $\iint_{T} y^{3} d A$ where T is the triangular region enclosed by $y=2 x$, $y=-2 x$, and $x=-1$.
5. Let R be the region enclosed by the triangle with vertices at the point $(0,0),(0,1)$. and $(1,1)$. Evaluate $\iint_{R} 2 \sin \left(\pi y^{2}\right) d A$
6. Determine $\int_{0}^{1}\left(\int_{\sqrt{x}}^{1} \sin \left(\pi y^{3}\right) d y\right) d x$.
7. Determine $\iint_{R} \frac{1}{x^{4}+y^{2}} d A$, where R is the region enclosed by $y=x^{2}$, $y=-x^{2}, x=1$ and $x=2$.
8. Use double integrals to find the volume of the region in the first octant $(x, y, z \geq 0)$ below the plane $x+3 y+z=6$.
9. Find the volume under the surface $f(x, y)=y$ over the region R enclosed by $y=x^{2}$ and $y=x+2$ in the $x y$-plane.
10. Determine $\int_{0}^{2}\left(\int_{\frac{y}{2}}^{1} e^{x^{2}} d x\right) d y$.
11. Use double integrals to find the volume of the region in the first octant ($x, y, z \geq 0$) bounded by the vertical plane $2 x+y=2$ and the surface $z=x^{2}$.
12. Find the volume of the solid lying above the triangular region enclosed by $y=x, y=0$ and $x=1$ and below the surface $z=2-x$.
13. Use double integrals to find the volume of the region lying above the planar region bounded by $x=0, y=0$, and $y=1-x$, and below the surface $z=x+2 y$.
14. Let D be the planar region described by $0 \leq y \leq 1-x^{2}, 0 \leq x \leq 1$. Evaluate $\iint_{D}(1-x) d A$
15. Compute $\iint_{R} \cos \left(y^{2}\right) d A$ where R is the triangular region with vertices at the points $(0,0),\left(\frac{\pi}{6}, \frac{\pi}{6}\right)$, and $\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$.
16. Find the volume of the region in the first octant below the plane $2 x+$ $3 y+4 z=12$.
17. Determine $\iint_{R} \sin (2 x-3 y) d A$, where R is the region described by $0 \leq x \leq \frac{\pi}{4}, 0 \leq y \leq \pi$.
18. The iterated integral $\int_{0}^{2}\left(\int_{3 x^{3}}^{6 x^{2}} g(x, y) d y\right) d x$ is the double integral of $g(x, y)$ over a planar region R. Express the double integral as an iterated integral with the order of integrals reversed.
19. Use double integrals to find the area enclosed by $y=\sqrt{2-x^{2}}$, and $y=x^{2}$.
20. Let E be a planar region and let $\iint_{E} f(x, y) d A=\int_{0}^{2}\left(\int_{\sqrt{x}}^{\sqrt{6-x^{2}}} f(x, y) d y\right)$ $d x$. Sketch the region E.

ANSWERS

(1) 2
(2) 1
(3) 0
(4) 0
(5) $\frac{2}{\pi}$
(6) $\frac{2}{3 \pi}$
(7) $\frac{\pi}{4}$
(8) 12
(9) $\frac{36}{5}$
(10) $e-1$
(11) $\frac{1}{6}$
(12) $\frac{2}{3}$
(13) $\frac{1}{2}$
(14) $\frac{5}{12}$
(15) $\sin \left(\frac{\pi^{2}}{36}\right)$
(16) 12
(17) $-\frac{1}{3}$
(18) $\quad \int_{0}^{24}\left(\int_{\sqrt{\frac{y}{6}}}^{\sqrt[3]{\frac{y}{3}}} g(x, y) d x\right) d y$
(19) $\frac{\pi}{2}+\frac{1}{3}$
(20) R is the planar region in the first quadrant enclosed by $x=0$, the parabola $y^{2}=x$ and the circle $x^{2}+y^{2}=6$.

HINTS

5. the triangular region is described by : $0 \leq x \leq y, 0 \leq y \leq 1$.
6. $\int \frac{1}{x^{4}+y^{2}} d y=\frac{1}{x^{2}} \arctan \left(\frac{y}{x^{2}}\right)$.
7. The triangular region is enclosed by $y=x, y=\frac{x}{3}$, and $y=\frac{\pi}{6}$. Treat region as x-simple.
