AMAT 219 PRACTICE SHEET #5

1. Find $\iint_R x^2 \, dA$ where R is the rectangular region described by $-1 \le x \le 1$, $0 \le y \le 3$

2. Find $\iint_R xy \, dA$ where R is the rectangular region enclosed by x = 0, x = 2, y = 0, and y = 1.

3. Find $\iint_D \cos(x+2y) \, dA$ where *D* is the rectangular region described by $0 \le x \le \frac{\pi}{2}$, $0 \le y \le \frac{\pi}{4}$.

4. Find $\iint_T y^3 dA$ where T is the triangular region enclosed by y = 2x, y = -2x, and x = -1.

5. Let R be the region enclosed by the triangle with vertices at the point (0,0), (0,1). and (1,1). Evaluate $\iint_{\mathcal{B}} 2\sin(\pi y^2) dA$

6. Determine $\int_0^1 \left(\int_{\sqrt{x}}^1 \sin(\pi y^3) dy \right) dx$.

7. Determine $\iint_R \frac{1}{x^4 + y^2} dA$, where R is the region enclosed by $y = x^2$, $y = -x^2$, x = 1 and x = 2.

8. Use double integrals to find the volume of the region in the first octant $(x, y, z \ge 0)$ below the plane x + 3y + z = 6.

9. Find the volume under the surface f(x, y) = y over the region R enclosed by $y = x^2$ and y = x + 2 in the xy-plane.

10. Determine
$$\int_{0}^{2} \left(\int_{\frac{y}{2}}^{1} e^{x^{2}} dx \right) dy$$

11. Use double integrals to find the volume of the region in the first octant ($x, y, z \ge 0$) bounded by the vertical plane 2x + y = 2 and the surface $z = x^2$.

12. Find the volume of the solid lying above the triangular region enclosed by y = x, y = 0 and x = 1 and below the surface z = 2 - x.

13. Use double integrals to find the volume of the region lying above the planar region bounded by x = 0, y = 0, and y = 1 - x, and below the surface z = x + 2y.

14. Let *D* be the planar region described by $0 \le y \le 1 - x^2$, $0 \le x \le 1$. Evaluate $\iint_{D} (1-x) dA$ 15. Compute $\iint_{R} \cos(y^2) dA$ where *R* is the triangular region with vertices at the points $(0,0), (\frac{\pi}{6}, \frac{\pi}{6})$, and $(\frac{\pi}{2}, \frac{\pi}{6})$.

16. Find the volume of the region in the first octant below the plane 2x + 3y + 4z = 12.

17. Determine $\iint_R \sin(2x - 3y) \ dA$, where R is the region described by $0 \le x \le \frac{\pi}{4}$, $0 \le y \le \pi$.

18. The iterated integral $\int_{0}^{2} \left(\int_{3x^{3}}^{6x^{2}} g(x, y) dy \right) dx$ is the double integral of g(x, y) over a planar region R. Express the double integral as an iterated integral with the order of integrals reversed.

19. Use double integrals to find the area enclosed by $y = \sqrt{2 - x^2}$, and $y = x^2$.

20. Let *E* be a planar region and let $\iint_E f(x,y) dA = \int_0^2 \left(\int_{\sqrt{x}}^{\sqrt{6-x^2}} f(x,y) dy \right) dx$. Sketch the region *E*.

ANSWERS

(1) 2 (2) 1 (3) 0 (4) 0 (5)
$$\frac{2}{\pi}$$

(6) $\frac{2}{3\pi}$ (7) $\frac{\pi}{4}$ (8) 12 (9) $\frac{36}{5}$ (10) $e-1$
(11) $\frac{1}{6}$ (12) $\frac{2}{3}$ (13) $\frac{1}{2}$ (14) $\frac{5}{12}$ (15) $\sin(\frac{\pi^2}{36})$
(16) 12 (17) $-\frac{1}{3}$ (18) $\int_{0}^{24} \left(\int_{\sqrt{\frac{y}{6}}}^{\sqrt{\frac{y}{3}}} g(x,y) dx\right) dy$ (19) $\frac{\pi}{2} + \frac{1}{3}$

(20) R is the planar region in the first quadrant enclosed by x = 0, the parabola $y^2 = x$ and the circle $x^2 + y^2 = 6$.

<u>HINTS</u>

5. the triangular region is described by : $0 \le x \le y$, $0 \le y \le 1$.

7.
$$\int \frac{1}{x^4 + y^2} dy = \frac{1}{x^2} \arctan(\frac{y}{x^2})$$
.

15. The triangular region is enclosed by $y = x, y = \frac{x}{3}$, and $y = \frac{\pi}{6}$. Treat region as x-simple.