AMAT 219 PRACTICE SHEET #10

- 1. Find the cartesian equation of the tangent line to the plane curve given parametrically by $x(t)=t^2+1$, $y(t)=t^4+2t^2+1$, at the point (1,1).
- 2. Find the cartesian equations of the tangent and normal lines to the **cycloid** $x(t) = t \sin(t)$, $y(t) = 1 \cos(t)$ at the point corresponding to $t = \frac{\pi}{2}$.
- 3. Find the arc length of the plane parametric curve $\overline{r(t)}=(\cos^3(t),\sin^3(t))$, $0 \le t \le \frac{\pi}{2}$.
- 4. Find the cartesian equation of the plane curve given parametrically by $x(t)=2\cosh(t),\,y(t)=4\sinh^2(t)$, $t\in\mathbb{R}$.
- 5. Find the cartesian equation of the tangent line to the plane curve $\overrightarrow{r(s)} = (s^2 + 2s 6, 7 s^3)$, at the point (2, -1).
- 6. Determine the arc length of the plane curve given by the vector function $\overrightarrow{r(t)}=(t,\frac{2}{3}(t+3)^{3/2})$, $0\leq t\leq 1$.
- 7. Determine the point of intersection of the two parametric curves $(x(t), y(t)) = (2t, 3t^2 + 4)$ and $(x(s), y(s)) = (s, s^2)$.
- 8. The position vector of a particle moving in space is given by $\overrightarrow{r(t)} = (t^2 + 2t 8)\overrightarrow{i} + (\frac{1}{2}t^2 1)\overrightarrow{j} \sqrt{2}t^{3/2}\overrightarrow{k}$. Find the velocity, acceleration, and the speed of the particle at the point (0, 1, -4).
- 9. The position of a particle at time t (in seconds) is given by $(x(t), y(t), z(t)) = (\frac{1}{3}t^3 3t, \frac{1}{2}t^2, 2t + 7)$ where x, y, and z are measured in meters. When will the speed of the particle be $3 \ m \ / \ s$?
- 10. Find the cartesian equation of the plane curve given parametrically by $(x(t),y(t))=(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$, $t\in[-1,1]$. Identify the curve and sketch indicating the orientation.
- 11. Find the arc length of the space curve given parametrically by x(t) = 1, $y(t) = 2t \sin(2t)$, $z(t) = 1 \cos(2t)$, $0 \le t \le \pi$
- 12. A conic section is given parametrically by $x(t) = -1 + 4\sec(t)$, $y(t) = 6 3\tan(t)$, $t \in [0, \frac{\pi}{2})$. Name the curve and sketch.
- 13. Name the conic section defined by the vector function $\overrightarrow{r(t)} = (1 + 2\sin(t), -6 + 2\cos(t))$, $t \in [0, 2\pi]$.
- 14. Find the arc length of the space curve given by $\overrightarrow{r(t)}=(\frac{1}{3}t^3,t^2,2t)$, $0\leq t\leq 3$.

15 The position vector of a particle is given by $\overrightarrow{r(t)} = 4\sqrt{t} \overrightarrow{i} + 9 \overrightarrow{j} + t^2 \overrightarrow{k}$. Determine the speed of particle at t = 2.

- 16. Find the cartesian equation of the tangent line to the parametric curve given by $\overrightarrow{r(t)} = (e^t \cos(t), e^t \sin(t))$ at the point corresponding to $t = \frac{\pi}{2}$.
- 17. Find the arc length of the space curve given by $x(t)=e^{-4t}\cos(2t),$ $y(t)=e^{-4t}\sin(2t),$ $z(t)=e^{-4t},$ $0 \le t \le \frac{\ln 2}{4}.$
- 18. The position vector of a moving particle is given by $\overrightarrow{r(t)} = (t^2 1)\overrightarrow{i} + \sqrt{3t}\overrightarrow{j} + (t^2 + t)\overrightarrow{k}$. At what times is the speed of particle equal to 4?
- 19. Find the cartesian equation of the conic section given parametrically by $x(t)=3+2\cos(t),\ y(t)=\frac{1}{5}\sin(t),\quad t\in[0,2\pi].$
- 20. Find the area of the surface generated by revolving the arc of the parametric curve $x(t) = 2 t^3$, $y(t) = 3t^2$, $0 \le t \le 1$ about the x axis.

ANSWERS

1.
$$y=2x-1$$
 2. Tangent line: $y=x-\frac{\pi}{2}+2$, Normal line : $y=-x+\frac{\pi}{2}$ 3. $\frac{3}{2}$

4.
$$y = x^2 - 4$$
, $x \ge 2$. 5. $y = -2x + 3$ 6. $\frac{2}{3}(5\sqrt{5} - 8)$ 7. $(\pm 4, 16)$

8. Velocity
$$\overrightarrow{v}=(6,2,-3)$$
 , Acceleration $\overrightarrow{a}=(2,1,-\frac{3}{4})$, Speed = 7

12.
$$\frac{(x+1)^2}{16}-\frac{(y-6)^2}{9}=1 \text{ , the part of the hyperbola centred at } (-1\ ,6) \text{ , such that } x\in[3,\infty) \text{ , } y\in(-\infty\ ,6].$$

13. The full circle centred at the point (1,-6) and has radius 2 units.

14. 15 15.
$$3\sqrt{2}$$
 16. $y = -x + e^{\pi/2}$ 17. $\frac{3}{4}$

18.
$$t = -\frac{3}{2}$$
 or 1 19 $\frac{(x-3)^2}{2^2} + \frac{y^2}{(1/5)^2} = 1$ (An ellipse)

20.
$$\frac{12}{5}(\sqrt{2}+1)$$
 . Hint: Use the substitution $u^2=t^2+1$.