AMAT 219 PRACTICE SHEET #4

1. In each case find the value of Trapezoidal Rule, Midpoint Rule, and Simpson's Rule estimate for

the given integral and the specified value of n.

(a)
$$\int_0^1 \frac{1}{1+x^2} dx$$
, $n=6$.

(b)
$$\int_{0}^{1} \cos(x^{2}) dx$$
, $n = 6$

(c)
$$\int_{1}^{7} \frac{1}{x+1} dx$$
, $n=6$

- 2. Refer to problem #1, find the values of T_{12} and S_{12} .
- 3. Refer to problem #1 part (a), find an estimate for the value of π obtained from each

of the three rules (round your answers to four decimal places).

4. Refer to problem #1 part (c), find an estimate for the value of $\ln(2)$ obtained from each

of the three rules (round your answers to six decimal places).

5. Refer to problem #1part (c). Find an estimate for the absolute value of the Error involved in

approximating the integral using:

$$(i) T_6$$

$$(ii) M_6 \qquad (iii) S_6$$

6. Find the value of the Simpson's Rule estimate
$$S_n$$
 for $\int_0^2 (3x^2 - 4x + 2)$

dx,

where n is an arbitrary even positive integer.

7. Use the Trapezoidal Rule and the data in the following table to estimate the value of $\int_{-14}^{21} y(t) dt$.

t	14	15	16	17	18	19	20	21
y	-6	-4	-2	0	2	4	6	8

8. How large should we take n in order to guarantee that the Trapezoidal Rule approximation for

$$\int_{-1}^{3} \frac{1}{x} dx$$
 is accurate to within 0.03?

9. How large should we take n in order to guarantee that the Simpson's Rule estimate for

$$\int_{-1}^{4} \frac{1}{x} dx$$
 is accurate to within 0.00064?

ANSWERS

- $1.(a) T_6 = 0.784240767$, $M_6 = 0.785976857$, $S_6 = 0.785397945$
 - (b) $T_6 = 0.900628388$, $M_6 = 0.906472209$, $S_6 = 0.904522925$
 - $(c) \ T_6 = 1.405357143 \quad , \quad M_6 = 1.376934177 \quad \quad , \quad S_6 = 1.387698413$
- $2.(a) T_{12} = 0.785108812 , S_{12} = 0.785398160$
- (b) $T_{12} = 0.903550299$, $S_{12} = 0.904524269$
- (c) $T_{12} = 1.391145660$, $S_{12} = 1.386408499$
- 3. Using Trapezoidal Rule T_6 , we find $\pi \cong 3.1370$

Using Midpoint Rule M_6 , we find $\pi \cong 3.1439$

Using Simpson's Rule S_6 , we find $\pi \cong 3.1416$

4. Using Trapezoidal rule T_6 , we find $\ln(2) \cong 0.702679$

Using Midpoint Rule M_6 , we find $\ln(2) \approx 0.688467$

Using Simpson's Rule S_6 , we find $\ln(2) \approx 0.693849$

- 5. (i) $E_6 \le 0.125$
- (ii) $E_6 \le 0.0625$
- (*iii*) $E_6 \le 0.025$

- 6. $S_n = 4$
- 7. $T_7 = 7$
- 8. n = 7
- 9. n = 16

Hints

- 1. (b) Calculator should be in radian mode!
- 2. Use relations: $T_{2n} = \frac{T_n + M_n}{2}$, $S_{2n} = \frac{T_n + 2M_n}{3}$ with n = 6.
- 3. Verify that $\int_0^1 \frac{1}{x^2+1} dx = \frac{\pi}{4}$ and hence $4T_6$ or $4M_6$ or $4S_6$ are the required estimates of π .
- 4. Verify that $\int_{1}^{7} \frac{1}{x+1} dx = 2 \ln(2)$ and hence $\frac{1}{2}T_6$ or $\frac{1}{2}M_6$ or $\frac{1}{2}S_6$ are the required estimates of $\ln(2)$.
 - 5. The function $\frac{1}{(x+1)^r}$ is strictly decreasing on [1,7] for r=1,2,3,... and

hence its absolute maximum value say " k " occurs at x = 1.

6. Note that the integrand is a polynomial of degree two!