AMAT 219 PRACTICE SHEET \#6

1. Let R be the planar region enclosed by the semi-circle $y=\sqrt{1-x^{2}}$ and $y=0$.

Use polar coordinates to find $\iint_{R} y d A$.
2. Compute $\iint_{D}\left(x^{2}+y^{2}\right)^{\frac{5}{2}} d A$, where D is the closed disk in the plane bounded by the circle of radius b centred at the origin .
3. Suppose R is the quarter circle bounded by $x^{2}+y^{2}=3$, with $x \geq 0$, $y \geq 0$.

Use polar coordinates to find $\iint_{R} \frac{1}{\sqrt{1+x^{2}+y^{2}}} d A$.
4. Let R be the semi-circle centred at $(0,0)$ and has radius 2 units with $y \geq 0$.

Use polar coordinates to find $\iint_{R} y^{2} d A$.
5. Find the volume enclosed by the surfaces $z=5-\left(x^{2}+y^{2}\right)$, and $z=4$.
6. Use double integrals to find the volume enclosed by the surfaces $z=$ $\sqrt{x^{2}+y^{2}}$ and $z=6-x^{2}-y^{2}$.
7. Use double integrals to find the volume of the solid enclosed by the two surfaces $z=\left(x^{2}+y^{2}\right)^{\frac{3}{2}}$, and $z=16-\left(x^{2}+y^{2}\right)^{\frac{3}{2}}$.
8. Find the volume of the region described by $x^{2}+y^{2} \leq z \leq 8-\left(x^{2}+y^{2}\right)$.
9. Use double integrals to find the volume enclosed by the two surfaces $z=x^{2}+y^{2}$ and $z=2-\sqrt{x^{2}+y^{2}}$.
10. Determine $\iint_{R} e^{-\left(x^{2}+y^{2}\right)} d A$, where R is the quarter circle $x^{2}+y^{2}=\alpha^{2}$, $\alpha>0$, with $x \geq 0, y \geq 0$.

ANSWERS

1. $\frac{2}{3}$
2. $\frac{2 \pi}{7} b^{7}$
3. $\frac{\pi}{2}$
4. 2π
5. $\frac{\pi}{2}$
6. $\frac{32 \pi}{3}$
7. $\frac{192}{5} \pi$
8. 16π
9. $\frac{5 \pi}{6}$
10.
