AMAT 219 PRACTICE SHEET #6

1. Let R be the planar region enclosed by the semi-circle $y = \sqrt{1 - x^2}$ and y = 0.

Use polar coordinates to find $\iint_R y \, dA$.

2. Compute $\iint_D (x^2 + y^2)^{\frac{5}{2}} dA$, where *D* is the closed disk in the plane bounded by the circle of radius *b* centred at the origin.

3. Suppose R is the quarter circle bounded by $x^2+y^2=3,$ with $\ x\geq 0$, $y\geq 0.$

Use polar coordinates to find $\iint_R \frac{1}{\sqrt{1+x^2+y^2}} dA$.

4. Let R be the semi-circle centred at (0,0) and has radius 2 units with $y \ge 0$.

Use polar coordinates to find $\iint_R y^2 dA$.

5. Find the volume enclosed by the surfaces $z = 5 - (x^2 + y^2)$, and z = 4.

6. Use double integrals to find the volume enclosed by the surfaces $z = \sqrt{x^2 + y^2}$ and $z = 6 - x^2 - y^2$.

7. Use double integrals to find the volume of the solid enclosed by the two surfaces $z = (x^2 + y^2)^{\frac{3}{2}}$, and $z = 16 - (x^2 + y^2)^{\frac{3}{2}}$.

8. Find the volume of the region described by $x^2 + y^2 \le z \le 8 - (x^2 + y^2)$.

9. Use double integrals to find the volume enclosed by the two surfaces $z = x^2 + y^2$ and $z = 2 - \sqrt{x^2 + y^2}$.

10. Determine $\iint_R e^{-(x^2+y^2)} \, dA$, where R is the quarter circle $x^2+y^2=\alpha^2,$ $\alpha>0,$ with $x\geq 0$, $y\geq 0.$

ANSWERS

1.
$$\frac{2}{3}$$
 2. $\frac{2\pi}{7}b^7$ 3. $\frac{\pi}{2}$ 4. 2π 5. $\frac{\pi}{2}$
6. $\frac{32\pi}{3}$ 7. $\frac{192}{5}\pi$ 8. 16π 9. $\frac{5\pi}{6}$ 10. $\frac{\pi}{4}(1-e^{-\alpha^2})$