PARTIAL FRACTIONS

Proper Rational Fraction:

If the degree of f(z) is less than the degree of g(z) then QL(% , where f(z) and g(z) are polynomials, is
called a proper rational fraction. Every proper rational fraction can be expressed (at least, theoretically) as
a sum of similar fractions (partial fractions) whose denominators are of the form (az+b)™ and (az®+bz+c)",
n being a postive integer. Four cases, depending upon the nature of the factors of the denominator, arise.

CASE 1: Distinct linear factors
To each linear factor az + b occurring once in the denominator of a proper rational fraction, there

corresponds a single partial fraction of the form é;’:_—b, where A is a constant to be determined.
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CASE 2: Repeated linear factors
To each linear factor az + b occurring n -times in the denominator, there corresponds a sum of n partial
fractions of the form E“‘_‘f_—b + m + ..+ E‘ﬂ_l{ﬁ; , where the A’s are constants to be determined.
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CASE 3: Distinct quadratic factors
To each irreducible quadratic factor az? + bz + ¢ occurring once in the denominator, there corresponds

a single partial fraction of the form ;djj_b%, where A and B are constants to be determined.
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CASE 4: Repeated .qua.dratic factors :

To each irreducible quadratic factor az?-+-bz+c occurring n times in the denominator, there corresponds
a sum of n partial fractio’gs of the form 4=tB. 4 (—af% +...F ﬁ‘fﬁ%ﬁ , where the A’s and B’s
are constants to be determined.
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