AMAT 219 PRACTICE SHEET #11

1. Find first order partial derivatives of:

(a)
$$f(x,y) = y^2 e^{x^2 + 4y}$$
 (b) $z = \ln(\tan(y) + xy^3)$ (c) $g(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$

 $2.\ {\rm Find}$ all partial derivatives of order two for each of the following functions .

(a)
$$z = \sin(x^2 + 2y^5)$$
 (b) $g(x, y, z) = \ln(x^3 y^5 z^7)$ (c) $z = e^{xy}$

- 3. Find an equation of the plane tangent to the surface xyz = 8 at the point (-1, -2, 4).
- 4. Find an equation of the plane tangent to the hyperboloid $2x^2 + 3y^2 4z^2 = -11$ at the point (-1, 1, 2).
- 5. Find vector equation of the line normal to surface $z = \sqrt[3]{x^3 + y^2}$ at the point on surface where x = -2, y = 3.
- 6. Find an equation of the tangent plane to surface $z = e^{x^2+y^3}$ at the point on the surface where x = 1, y = -1.
- 7. Find a unit vector orthogonal (normal) to surface xyz=-2 at the point (1,-2,1).
- 8. Find a unit vector orthogonal to surface $z = \sin(x + 2y)$ at the point (-2, 1, 0).
- 9. Find the x and y coordinates of the critical points for the function $f(x,y) = x^4 4xy + 2y^2 + 9$.
- 10. Find the x and y coordinates of the critical points for the function $f(x,y) = x^2 + xy y^2 + 3x 11y + 14$.
- 11. Find the x and y coordinates of the critical points for the function $f(x,y) = x^3 + 3xy 6y 17$.
- 12. The relation $x^4 + xy + y^3z + z^4 = 4$ implicitly defines y as a function of z and z, find $\frac{\partial y}{\partial z}$.
 - 13. Find $\frac{\partial x}{\partial y}$ if x = x(y, z) is defined implicitly by $x^3z + xy^2 + \sin(xyz) = 0$.
- 14. Given that the relation $3x^5 + 9xy 2zy^4 + 3z^3 = 11$ implicitly defines x as a function of y and z. Compute $\frac{\partial x}{\partial z}$ at the point (1,1,-1).

- 15. Let $v(x,t) = \sec(\frac{\sqrt{x}}{t})$. Find $2x\frac{\partial v}{\partial x} + t\frac{\partial v}{\partial t}$ and simplify.
- 16. Let $u(x,t) = \sin(\frac{x^2}{t^3} 1)$. Find $2t\frac{\partial u}{\partial t} + 3x\frac{\partial u}{\partial x}$ and simplify.
- 17. Let z = f(x + 2y) where f(t) is a function such that $f''(t) = e^{t^3}$. Determine $\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$.
- 18. Let $z=x^4+2xy$, where $x=1-\sin(2t)$, $y=t\ln(1+t)$. Use the chain rule to find $\frac{dz}{dt}$ at t=0.
- 19. Suppose z = f(x, y) where $x = r\cos(\theta)$ and $y = r\sin(\theta)$. If $\frac{\partial f}{\partial x}(1, 1) = 3$, and $\frac{\partial f}{\partial y}(1, 1) = -1$, find $\frac{\partial z}{\partial \theta}$ when $r = \sqrt{2}$ and $\theta = \frac{\pi}{4}$.
- 20. Let $z = \ln(x^3 + 2y)$ where x = x(r, s) and y = y(r, s). Find $\frac{\partial z}{\partial s}$ at r = 1, s = 3 if x(1,3) = 0, $y(1,3) = \frac{1}{2}$, $\frac{\partial x}{\partial s}(1,3) = -1$, and $\frac{\partial y}{\partial s}(1,3) = 2$.
- 21. Let z=u(p,q) where $p=x^2+y^2,\,q=x^2-y^2$, and u is a function such that $\frac{\partial u}{\partial p}=-q$, $\frac{\partial u}{\partial q}=p.$ Determine $\frac{\partial z}{\partial x}.$
- 22. Let $f(t) = (t-2)e^t$ and let w = f(x+2y). Find $\frac{\partial^2 w}{\partial y \partial x}$ and simplify your answer.
 - 23. Show that the function $w = \ln \sqrt{x^2 + y^2}$ is Harmonic.

Note: A function is Harmonic if it satisfies Laplace equation $\nabla^2 w = 0$.

- 24. Let f(t) be a function such that f''(5) = -2 and let $W(x,y) = f(x^2 4y)$. Determine $\frac{\partial^2 W}{\partial x \partial y}(1, -1)$.
- 25. Let $z=x^4+y^3$, where $x=u^2v$, and $y=uv^2$. Find $\frac{\partial z}{\partial u}$ at u=1, v=-1.

ANSWERS

3.
$$4x + 2y - z + 12 = 0$$
 4. $2x - 3y + 8z = 11$ 5 $(x, y, z) = (-2, 3, 1) + t(12, 6, -3)$

6.
$$2x + 3y - z = -2$$
 7. $\overrightarrow{n} = \pm \left(-\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$ 8. $\overrightarrow{n} = \pm \frac{1}{\sqrt{6}}(1, 2, -1)$

9.
$$(x,y) = (0,0), (1,1), (-1,-1).$$
 10. $(x,y) = (1,-5)$ 11. $(x,y) = (2,-4).$

12.
$$\frac{\partial y}{\partial z} = -\frac{y^3 + 4z^3}{x + 3y^2z}$$
 13.
$$\frac{\partial x}{\partial y} = -\frac{2xy + xz\cos(xyz)}{3x^2z + y^2 + yz\cos(xyz)}$$

14.
$$-\frac{7}{24}$$
 15. 0

17.
$$7 e^{(x+2y)^3}$$
 18. -8 19.

20.
$$4$$
 21. $4xy^2$ 22. $2(x+2y) e^{x+2y}$

23. Show
$$w_{xx} + w_{yy} = 0$$
 24 16 25.