AMAT 219 PRACTICE SHEET \#11

1. Find first order partial derivatives of:
(a) $f(x, y)=y^{2} e^{x^{2}+4 y}$
(b) $z=\ln \left(\tan (y)+x y^{3}\right)$
$g(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$
(c)
2. Find all partial derivatives of order two for each of the following functions :
(a) $z=\sin \left(x^{2}+2 y^{5}\right)$
(b) $g(x, y, z)=\ln \left(x^{3} y^{5} z^{7}\right)$
$z=e^{x y}$
3. Find an equation of the plane tangent to the surface $x y z=8$ at the point $(-1,-2,4)$.
4. Find an equation of the plane tangent to the hyperboloid $2 x^{2}+3 y^{2}-4 z^{2}=$ -11 at the point $(-1,1,2)$.
5. Find vector equation of the line normal to surface $z=\sqrt[3]{x^{3}+y^{2}}$ at the point on surface where $x=-2, y=3$.
6. Find an equation of the tangent plane to surface $z=e^{x^{2}+y^{3}}$ at the point on the surface where $x=1, y=-1$.
7. Find a unit vector orthogonal (normal) to surface $x y z=-2$ at the point $(1,-2,1)$.
8. Find a unit vector orthogonal to surface $z=\sin (x+2 y)$ at the point $(-2,1,0)$.
9. Find the x and y - coordinates of the critical points for the function $f(x, y)=x^{4}-4 x y+2 y^{2}+9$.
10. Find the x and y - coordinates of the critical points for the function $f(x, y)=x^{2}+x y-y^{2}+3 x-11 y+14$.
11. Find the x and y - coordinates of the critical points for the function $f(x, y)=x^{3}+3 x y-6 y-17$.
12. The relation $x^{4}+x y+y^{3} z+z^{4}=4$ implicitly defines y as a function of x and z, find $\frac{\partial y}{\partial z}$.
13. Find $\frac{\partial x}{\partial y}$ if $x=x(y, z)$ is defined implicitly by $x^{3} z+x y^{2}+\sin (x y z)=0$.
14. Given that the relation $3 x^{5}+9 x y-2 z y^{4}+3 z^{3}=11$ implicitly defines x as a function of y and z. Compute $\frac{\partial x}{\partial z}$ at the point $(1,1,-1)$.
15. Let $v(x, t)=\sec \left(\frac{\sqrt{x}}{t}\right)$. Find $2 x \frac{\partial v}{\partial x}+t \frac{\partial v}{\partial t}$ and simplify.
16. Let $u(x, t)=\sin \left(\frac{x^{2}}{t^{3}}-1\right)$. Find $2 t \frac{\partial u}{\partial t}+3 x \frac{\partial u}{\partial x}$ and simplify.
17. Let $z=f(x+2 y)$ where $f(t)$ is a function such that $f^{\prime \prime}(t)=e^{t^{3}}$. Determine $\frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}$.
18. Let $z=x^{4}+2 x y$, where $x=1-\sin (2 t), y=t \ln (1+t)$. Use the chain rule to find $\frac{d z}{d t}$ at $t=0$.
19. Suppose $z=f(x, y)$ where $x=r \cos (\theta)$ and $y=r \sin (\theta)$. If $\frac{\partial f}{\partial x}(1,1)=$ 3 , and $\frac{\partial f}{\partial y}(1,1)=-1$, find $\frac{\partial z}{\partial \theta}$ when $r=\sqrt{2}$ and $\theta=\frac{\pi}{4}$.
20. Let $z=\ln \left(x^{3}+2 y\right)$ where $x=x(r, s)$ and $y=y(r, s)$. Find $\frac{\partial z}{\partial s}$ at $r=1$, $s=3$ if $x(1,3)=0, y(1,3)=\frac{1}{2}, \frac{\partial x}{\partial s}(1,3)=-1$, and $\frac{\partial y}{\partial s}(1,3)=2$.
21. Let $z=u(p, q)$ where $p=x^{2}+y^{2}, q=x^{2}-y^{2}$, and u is a function such that $\frac{\partial u}{\partial p}=-q, \frac{\partial u}{\partial q}=p$. Determine $\frac{\partial z}{\partial x}$.
22. Let $f(t)=(t-2) e^{t}$ and let $w=f(x+2 y)$. Find $\frac{\partial^{2} w}{\partial y \partial x}$ and simplify your answer.
23. Show that the function $w=\ln \sqrt{x^{2}+y^{2}}$ is Harmonic.

Note: A function is Harmonic if it satisfies Laplace equation $\nabla^{2} w=0$.
24. Let $f(t)$ be a function such that $f^{\prime \prime}(5)=-2$ and let $W(x, y)=$ $f\left(x^{2}-4 y\right)$. Determine $\frac{\partial^{2} W}{\partial x \partial y}(1,-1)$.
25. Let $z=x^{4}+y^{3}$, where $x=u^{2} v$, and $y=u v^{2}$. Find $\frac{\partial z}{\partial u}$ at $u=1$, $v=-1$.

ANSWERS

3. $4 x+2 y-z+12=0$
4. $2 x-3 y+8 z=11$
5. $(x, y, z)=(-2,3,1)+t(12,6,-3)$
6. $2 x+3 y-z=-2$ $\frac{1}{\sqrt{6}}(1,2,-1)$
7. $\vec{n}= \pm\left(-\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right)$
8. $\vec{n}= \pm$

$$
\begin{aligned}
& \text { 9. }(x, y)=(0,0),(1,1),(-1,-1) . \quad \text { 10. }(x, y)=(1,-5) \\
& 11 . \\
& (x, y)=(2,-4) \text {. } \\
& \text { 12. } \frac{\partial y}{\partial z}=-\frac{y^{3}+4 z^{3}}{x+3 y^{2} z} \\
& \text { 13. } \frac{\partial x}{\partial y}=-\frac{2 x y+x z \cos (x y z)}{3 x^{2} z+y^{2}+y z \cos (x y z)} \\
& \text { 15. } 0 \\
& 16 . \\
& 0 \\
& \text { 17. } 7 e^{(x+2 y)^{3}} \\
& -4 \\
& \text { 20. } 4 \\
& \text { 21. } 4 x y^{2} \\
& 22 . \\
& 2(x+2 y) e^{x+2 y} \\
& \text { 23. Show } w_{x x}+w_{y y}=0 \\
& 24 \quad 16 \\
& 25 .
\end{aligned}
$$

