AMAT 219 PRACTICE SHEET #9

- 1. Determine $\iiint_R (xy+z) \ dV$, where R is the rectangular box described by $0 \le x \le 1$, $-1 \le y \le 1$, $0 \le z \le 3$.
- 2. Compute $\iiint_D dV$, where D is the region described by $0 \le x \le 1-3y-z$, $0 \le z \le 1-3y$, $0 \le y \le \frac{1}{3}$.
- 3. Compute $\iiint_R z \ dV$, where R is the region enclosed by the planes x=0,y=0,z=0, and x+y+z=2.
- 4. Use triple integrals to find the volume of the region in the first octant below the plane 2x + y + 3z = 6.
- 5. Evaluate $\iiint_R 3y^2 \ dV$, where R is the region in the first octant below the plane x+y+2z=2 by integrating with respect to "y" first.
- 6. Evaluate the moment about the xy-plane of the region such that $0 \le y \le 1-x^2, \quad 0 \le z \le x.$
- 7. Use triple integrals to find the volume of the region described by $x \ge 0$, $y \ge 0$, $z \ge 0$, $x + y \le 1$, and $z \le y$.
- 8. Use triple integrals to find the volume of the solid that lies inside the sphere $x^2 + y^2 + z^2 = 25$ and outside the cylinder $x^2 + y^2 = 9$.
- 9. Use triple integrals to find the volume of the solid bounded by the paraboloid $z = 2(x^2 + y^2)$, and the plane z = 2
- 10. Use cylindrical coordinates to compute $\iiint_R z \ dV$, where R is the region bounded by the cone $z=\sqrt{x^2+y^2}$, and the plane z=2.
- 11. Use spherical coordinates to compute $\iiint_R z^2 \sqrt{x^2+y^2+z^2} \ dV \ ,$ where is the region enclosed by the sphere $x^2+y^2+z^2=3$.
- 12. Determine $\iiint_R x^2z\;dV,$ where R is the hemi-spherical region $x^2+y^2+z^2\leq 3$, $z\geq 0.$
- 13. Determine $\iiint_D \frac{1}{\sqrt{1+(x^2+y^2+z^2)^\frac32}}\ dV\ , \ \text{where}\ D\ \text{is the region}$ described by $0\le z\le \sqrt{4-x^2-y^2}.$

- 14. Determine $\iiint_R (y^3+3yz^2)\ dV$ where R is the region occupied by a solid with density function $\delta(x,y,z)=y^2+3z^2$, mass equal to 9, and centre of mass at the point (3,2,4).
- 15. Find the volume of the solid which occupies the region R whose centroid is at the point (3, 2, 15), and its moment about the plane x = 0 is equal to 15.

ANSWERS

1. 9 2.
$$\frac{1}{18}$$
 3. $\frac{2}{3}$ 4. $V = 6$ 5. $\frac{4}{5}$

6.
$$M_{z=0} = \frac{1}{15}$$
 7. $\frac{1}{6}$ 8. $V = \frac{256}{3}\pi$ 9. $V = \pi$

11.
$$6\pi$$
 12. $\frac{9\pi}{8}$ 13. $\frac{8\pi}{3}$ 14. $M_{y=0} = 18$ 15. $V = 5$