Department of Mathematics and Statistics AMAT 219 - QUIZ 5 - Thursday, April 6, 2006

U of CID#

45 Minutes, Open Book, NO Calculators

To obtain credit you need to show your work. Work should be neat and organized.

1. Find
$$\frac{\partial^2 z}{\partial x \partial y}$$
 for $z = f(4x + 2y)$ given that $f''(t) = \cos(t)$.

Let
$$t = 4x + 2y$$

 $\frac{\partial^2}{\partial x} = \frac{\partial f}{\partial t} \cdot \frac{\partial f}{\partial x} = 4 \cdot \frac{\partial f}{\partial t}$

$$\frac{\partial^2 z}{\partial x \partial y} = 4 \frac{\partial^2 f}{\partial t^2} \cdot \frac{\partial t}{\partial y} = 2 \cdot 4 \cdot \frac{\partial^2 f}{\partial t^2} = 8 \cos{(4x + 2y)}.$$

2. Find the equation of the plane tangent to the surface
$$z = 5 + x^2y + y^2$$
 at the point $x = 1$, $y = -1$.

dt (1,-1) tangent plane has normal rector
$$(3f(1,-1),3f(1,-1),-1) = (-2,-1)$$

plane is
$$(1,-1,f(1,-1))=(1,-1,5)$$
, so

3. Use spherical coordinates to find the mass of the hemisphere $x^2 + y^2 + z^2 \le 1$, $z \ge 0$, with density $\delta(x, y, z) = \mathbf{5} \cdot z \sqrt{x^2 + y^2}$ (Hint: $\sqrt{x^2 + y^2} = \rho \sin \phi$ in spherical coordinates).

$$S = 5 \rho \cos \phi (\rho \sin \phi)$$

$$dV = \rho^2 \sin \phi d\rho d\phi d\phi$$

$$\delta = 5\rho \cos \phi (\rho \sin \phi) \quad \text{Hemisphere is } 0 \le \rho \le 1$$

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\phi \quad 0 \le \phi \in \mathbb{Z}_{11}$$

$$= 5.2\pi \int_{0}^{T_{2}} e^{5} \int_{0}^{1} o h^{2} \phi \cos d d\phi = 2\pi \left(s \frac{\dot{m}^{3} \phi}{3} \right)^{\frac{T_{2}}{3}}$$

4. Use triple integrals to find the volume of the solid enclosed by the region $0 \le x$, $0 \le y$, $x \le 4 - y^2$, and

5. Find the surface area of the surface formed by rotating the planar curve $c(t) = (r\cos(t), r\sin(t)), 0 \le t \le \pi/4$, around the y-axis.

Surname	Given Names	Lab#	Mark (20)
- 10			Y

I agree that this paper may be placed at the front of the classroom for pick-up.

Please initial: Yes_____or No____