Department of Mathematics and Statistics AMAT 219 - QUIZ 3 - Tuesday, February 28, 2006

U of C ID #

45 Minutes, Open Book, NO Calculators.

To obtain credit you need to show your work. Work should be neat and organized.

1. Write $\int_0^1 (\int_1^{y+1} \cos(x^2 + 1) dx) dy$ as an iterated integral with the order of integration reversed. Do not evaluate the integral.

$$\int_{1}^{2} \int_{1}^{1} \cos(x^{2}+1) dy dx$$

2. Find $\iint_R x^2 dA$, where R is the region in the xy – plane bounded by $f(x) = 5x^2$ and g(x) = 5x.

$$\iint_{R} x^{2} dA = \iint_{0}^{5x} x^{2} dy dx$$

$$\int_{0}^{5x^{2}} x^{2} dy dx$$

$$= \int_{0}^{1} (5x^{3} - 5x^{4}) dx = \frac{5}{4}x^{4} - x^{5} \Big|_{0}^{1} = \frac{1}{4}$$

3. Find $\iint_R y \, dA$ by viewing R as an x –simple region, where R is the region in the xy – plane bounded by y = -x,

$$y = 2x$$
, and $y = 2$.

 $y = -x$
 $y = -x$

$$\begin{cases} \begin{cases} y dA = \int_{0}^{2} \int_{0}^{4/2} y dx dy \\ R & o - y \end{cases}$$

$$= \int_{0}^{2} (y^{2} + y^{2}) dy = \frac{y^{3}}{2} \Big|_{0}^{2} = 4$$

4. Use double integrals to find the volume of the region in the first octant $(x, y, z \ge 0)$ below the plane 2x + 2y + z = 2.

$$z = f(x,y) = 2-2x-2y$$

= $2(1-x-y)$.

$$V_{0}l = \begin{cases} f(x,y)dA \\ R \\ = \begin{cases} (2(1-x)-2y)dy dx \end{cases}$$

$$= \int_{0}^{1} [2(1-x)^{2} - (1-x)^{2}]dx$$

$$= \int_{0}^{1} (1-x)^{2}dx = -(1-x)^{3} = \frac{1}{3}$$

5. Use polar coordinates to find $\iint_R y \, dA$ where R is the quarter disk in the first quadrant $(x, y \ge 0)$ bounded by $x^2 + y^2 = 1$.

$\iint_{R} y dA = \iint_{Q} r^{2} \sin \theta dr d\theta$	1/3.
$= \int_{0}^{\sqrt{3}} \frac{r^{3} \sin \theta}{3} \int_{0}^{\sqrt{3}} d\theta$	
$= \frac{1}{3} \int_{0}^{\pi/2} \sin \theta d\theta = -\frac{1}{3} \cos \theta \Big _{0}^{\pi/2} =$	1/3

Surname	Given Names	Lab #	Mark (20)
97		1967	

I agree that this paper may be placed at the front of the classroom for pick-up.

Please initial: Yes_____ or No_____