Department of Mathematics and Statistics AMAT 219 - QUIZ 4 - Tuesday, March 21, 2006

U of C ID#

45 Minutes, Open Book, NO Calculators

To obtain credit you need to show your work. Work should be neat and organized.

$$x(t) = -1 + t$$

 $y(t) = 1 - 3t$
 $z(t) = 3 + 2t$

2. Find the equation of the plane containing the point
$$(-1,1,2)$$
 and the line $\overrightarrow{l(t)} = (2,0,3) + t(1,2,0)$.

$$(-1,1,2)$$
 and $(2,0,3)$ are points in the plane
As Nector $(2-(-1),0-1,3-2)=(3,-1,1)$ is
I normal of plane.
 $(1,2,0)\times(3,-1,1)=(2,-1,-7)$ is normal to plane.
 $2x-y-7z=2(2)-0-7\cdot3=-17$

(diri

3. What is the point of interesction (if it exits) of the lines $\overrightarrow{l_1(t)} = (5,-1,2) + t(2,-2,4)$ and $\overrightarrow{l_2(t)} = (4,-1,1) + t(0,1,-1)$.

Find t, s with
$$l_1(t) = l_2(s)$$
, so with $5+2t=4$

$$-1-2t=-1+s$$

$$2+4t=1-s$$

Solution is
$$t = -\frac{1}{2}$$
, $s = 1$
Point of Intersection is $l_1(-\frac{1}{2}) = \overline{l_2(1)} = (4,0,0)$

4. Find the plane containing the point (0, 1, 2) and not meeting the two lines $l_1(t) = (1, 2, 0) + t(0, -1, 1)$ and $l_2(t) = (1, 1, -2) + t(2, 1, -1)$.

For a line and a plane not to meet the direction vector of the line must be the direction vector of perpendicular to the normal vector of the plane. So, a normal of the the plane is $(0,-1,1)\times(2,1,-1)=(0,2,2)$ plane is $(0,-1,1)\times(2,1,-1)=(0,2,2)$ and the equation of the plane is y+z=3.

5. Evaluate $\iiint_E (-2x+2) dV$ where E is the solid enclosed by the planes x=0, y=0, z=0, 2x+2y+z=2.

Surname	Given Names	Lab #	Mark (20)

I agree that this paper may be placed at the front of the classroom for pick-up.

Please initial: Yes_____or No____