First order homogeneous O.D.E.

Additional material on substitutions for first order ordinary differential equations.

Definition: A first order o.d.e. is called homogeneous if it can be written in the form $\frac{dy}{dx} = G\left(\frac{y}{x}\right)$ for some function G.

Example: The equation $x^2 \frac{dy}{dx} = yx + 3y^2$, x > 0

is homogeneous since we can rewrite it as $\frac{dy}{dx} = \frac{yx+3y^2}{x^2} = \frac{y}{x} + 3\left(\frac{y}{x}\right)^2$.

To solve these equations try the substitution $u = \frac{y}{x}$. Then xu = y and taking $\frac{d}{dx}$ of both sides gives $u + x\frac{du}{dx} = \frac{dy}{dx}$. The original equation then becomes $u + x\frac{du}{dx} = G(u)$ which is always a separable equation.

Once this equation is solved don't forget to express the solution in terms of the original variables x and y.

Try to solve the example above.

(Answer:
$$y = \frac{-x}{3\ln x + c}$$
, $c \in \mathbb{R}$).

Sample problems:

1.
$$y^2 \frac{dy}{dx} = y^3 - x^3$$
, $x > 0$.

(Answer:
$$y = x(-3 \ln x + 3c)^{\frac{1}{3}}, c \in \mathbb{R}.$$
)

$$2. x^2 \frac{dy}{dx} - yx = y^2$$

(Answer:
$$y = \frac{-x}{c + \ln x}, \quad c \in \mathbb{R}.$$
)

3.
$$(3x^2 - y^2) + (xy - x^3y^{-1})\frac{dy}{dx} = 0$$
.

(Answer:
$$\frac{y^2}{x^2} - \ln\left(\frac{y^2}{x^6}\right) = c, \quad c \in \mathbb{R}.$$
)