By popular demand, some quick solution to the 2005 AMAT 307 exams. These have NOT been checked for accuracy. M. Lamoureux.

1a) Use an integrating factor, soln $y=t^{2} / 5+C / t^{3}$.
b) This is an exact equation, $\operatorname{soln} e^{x y}+x^{2} y+y^{2} / 2=C$
c) We didn't cover equilibria in this class. But anyhow, the solutions are $=1$ is unstable, $y=5$ is stable, $y=6$ is unstable.
d) Linear constant coefficient, soln $y=A e^{-t}+B e^{-2 t}-t e^{-2 t}$
e) The Wronskian is given by $W=C \exp \int 1 /(t+1) d t=C /(t+1)$ and the initial condition gives $W=3 /(1+t)$
f) $A \cos (2 t)+B \sin (2 t)+C t \cos (2 t)+D t \sin (2 t)$.
g) $a_{n}=2^{n} / n$!, radius of convergence is infinity.
h) Radius of convergence is 3 , and it does not converge at $x=-2$.
i) $6 e^{-2 s+2} /(s-1)^{4}$
j) $2 t e^{-3 t}$
k) $2 e^{t} \cos (t)+3 e^{t} \sin (t)$
l) $y=A e^{t} u_{1}+B e^{-2 t} u_{2}+C e^{-2 t} u_{3}$
m) $y=2 e^{t} u_{1}+e^{3 t} u_{2}$
n) eigenvectors $u_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\prime}, u_{2}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\prime}$ and solution $y=A e^{2 t} u_{1}+B e^{3 t} u_{2}$
o) Yuck, this involves some complex eigenvalues. Eigenvalues are $2 \pm i$. Eigenvector $\left[\begin{array}{ll}1 & i\end{array}\right]$ corresponds to the eigenvalue $2+i$. Soln is $y=A e^{2 t}[\cos (t) \quad-\sin (t)]+B e^{2 t}[\sin (t) \quad \cos (t)]$.
2. Exponential growth is given by $y=y_{o} 2^{t / 7}$ to get doubling every day, or $y=y_{o} e^{t \ln 2 / 7}$. So the predator free equation is $y^{\prime}=(\ln (2) / 7) y$. With the predators, it changes to $y^{\prime}=(\ln (2) / 7) y-20,000$. This is a linear 1st order equation which is easily solved. Use the initial condition $y_{o}=200,000$.
3. This is a Bernouli equation. Do I have to explain Bernouli again?
4. The homogenous equation $y^{\prime \prime}-4 y^{\prime}+5 y=0$ has characteristic roots $2 \pm i$, so the general homogeneous solution is $A e^{2 t} \cos t+B e^{2 t} \sin t$. To find the particular solution, first look for a particular solution $y_{1}=$ $C \cos (2 t)+D \sin (2 t)$ to get the $\sin (2 t)$ part (solving for numerical values for C,D). Then look for $y_{2}=$ $E t^{2}+F t+G$ to get the t^{2} part, again solving for numerical values of E, F, G. The final answer is

$$
y=A e^{2 t} \cos t+B e^{2 t} \sin t+(8 / 65) \cos (2 t)+(1 / 65) \sin (2 t)+(8 / 5) t^{2}+(\ldots) t+(\ldots)
$$

where you can figure out those last two constants.
5. Well, we didn't do Euler's equations in this class, but we can solve this anyway. To solve the homogeneous equation, $x^{2} y^{\prime \prime}-2 y=0$, look for solutions of the form $y=x^{r}$. Easy to see that $r=2,-1$ work, so the general homogeneous solution is $y=A x^{2}+B x^{-1}$. We then do variation of parameters (yikes!) and get the general solution

$$
y=A x^{2}+B x^{-1}-(1 / 3) x^{-1} \ln x
$$

6. Just write $y=2+x+A x^{2}+B x^{3}+\ldots$ and plug into the DE and solve for A, B. Soln:

$$
y=2+x-x^{2}+(1 / 3) x^{3}+\ldots
$$

7. $a_{n+2}=\left[\left(n^{2}-n+2\right) /\left(n^{2}+3 n+2\right)\right] a_{n}$
8. Soln is $y=A e^{-t}+B t e^{-t}+2 t^{2} e^{-t}$.
9. Yuck. The eigenvalue 3 is degenerate, we only get one eigenvector $u_{1}=\left[\begin{array}{ll}1 & -1\end{array}\right]$. The corresponding generalized eigenvector is $u_{2}=\left[\begin{array}{ll}-0.5 & -0.5\end{array}\right]$. The general solutions is

$$
y=A e^{3 t} u_{1}+B e^{3 t}\left(u_{2}+t u_{1}\right)
$$

