AMAT 307 Module 1 : Intro and 1st Order DEs

Courtesy: Dr. P. Zvengrowski

Outline.

\Rightarrow Algebra: Exponential, Trigonometry, Complex Numbers, Polynomials
\Rightarrow IntroDE: Terminology, Mathematical Models, Direction Fields
\Rightarrow 1st Order ODEs

1 Algebra

1.1 Exponential

$$
\begin{aligned}
x^{a} x^{b} & =x^{a+b}, \quad x^{a} y^{a}=(x y)^{a}, \\
\left(x^{a}\right)^{b} & =x^{a b}, \quad x^{-a}=\frac{1}{x^{a}}, \\
e^{b \ln a} & =a^{b}, \quad \ln (x y)=\ln x+\ln y \\
\ln \left(x^{a}\right) & =a \ln x, \quad \log _{b}(x)=\ln x / \ln b .
\end{aligned}
$$

1.2 Trigonometry

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}, \\
& \sin (A+B)+\sin (A-B)=2 \sin A \cos B \\
& \sin (A+B)-\sin (A-B)=2 \cos A \sin B \\
& \cos (A+B)-\cos (A-B)=-2 \sin A \sin B \\
& \cos (A+B)+\cos (A-B)=2 \cos A \cos B \\
& \sin (2 x)=2 \sin x \cos x, \\
& \cos (2 x)=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x, \\
& \cos ^{2} x=\frac{1}{2}(1+\cos 2 x), \quad \sin ^{2} x=\frac{1}{2}(1-\cos 2 x)
\end{aligned}
$$

1.3 Complex Numbers

$$
\begin{aligned}
i^{2} & =-1, \quad i^{3}=-i, \quad i^{4}=1 \\
|a+i b| & =\sqrt{a^{2}+b^{2}} .
\end{aligned}
$$

If $z=a+i b$, then $\bar{z}=a-i b$,

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{a-i b}{a^{2}+b^{2}}, \quad z \neq 0
$$

Euler's formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

1.4 Polynomials

Let

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

If $x=r$ is a root, i.e., $p(r)=0$, then $(x-r)$ is a factor of $p(x)$, and conversely. If $a_{n}=1$ and all a_{i} are integers, then any integer root r must divide a_{0}. Method of synthetic division for $p(x) \div(x-r)$. When all a_{n} are real numbers, then any complex roots occur in conjugate pairs $a \pm b i$.

2 IntroDEs

2.1 Terminology

Basic Terms: ODE (Ordinary Differential Equations), PDE (Partial Differential Equations), Initial Condition (IC), Initial Value Problem (IVP), General Solution, Order of DE, Arbitrary Constants, Unique (specific) Solution, Linear ODE.

Example:

$$
a(t) y^{\prime \prime}+b(t) y^{\prime}+c(t) y=f(t)
$$

is $2 n d$ order linear DE. Dependent variable y, independent t.
General Principle: The order of the $\mathrm{DE}=$ number of arbitrary constants in the general solution (or the order of highest derivative in the DE).

2.2 Mathematical Models

Physical problem \Rightarrow mathematical model \Rightarrow solution.
Example 1:

$$
s^{\prime \prime}=-g
$$

models motion of a falling body under constant gravitational field, $g=$ gravity acceleration, $s=s(t)$-height above ground, $t=$ time.

Example 2:

$$
y^{\prime}=a y+b
$$

can model motion of a falling body with air resistance ($y=v=$ velocity) or population growth with a predator ($y=$ population), or Newton's cooling ($y=T=$ temperature), or mixing problems ($y=$ amount of solvent).

2.3 Direction Fields

For the first order DE

$$
y^{\prime}=f(t, x)
$$

plot the slope of the tangent y^{\prime} (a dash) at each point (t, y). When plotted for many points, the slopes indicate the solution curves-gives a visual picture of the specific solution passing through IC $\left(t_{0}, y_{0}\right)$. An equilibrium solution is one that does not depend on t.

3 1st Order ODEs

3.1 General Form and Solutions

$$
y^{\prime}=f(t, y)
$$

Other equivalent form, e.g.,

$$
M d t+N d y=0
$$

General Solution: must be one arbitrary constant;
Specific Soution: use IC to determine the value of the arbitrary constant.

3.2 Various Types and Methods of Solution

Linear:

$$
y^{\prime}+p(t) y=g(t)
$$

solve by
a)

$$
\mu(t)=e^{\int p(t) d t}
$$

b)

$$
y=\mu^{-1}(t)\left[\int \mu(t) g(t) d t+C\right]
$$

Separable:

$$
y^{\prime}=g(t) p(y)
$$

convert to

$$
\frac{d y}{p(y)}=g(t) d t
$$

then \int both sides.

Exact:

$$
M d t+N d y=0
$$

where

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Let

$$
F(t, y)=\int M d t
$$

this yields an arbitrary function $g(y)$, which is determined using

$$
\frac{\partial F}{\partial y}=N
$$

Solution is $F(t, y)=A$. If it's easier, one could also use $F(t, y)=\int N d y$, followed by $\frac{\partial F}{\partial t}=M$.

Homogeneous Coefficients: Can be written

$$
\frac{d y}{d t}=f\left(\frac{y}{t}\right)
$$

Substitute

$$
\begin{gathered}
y=t v \quad\left(v=\frac{y}{t}\right) \\
y^{\prime}=v+t v^{\prime}
\end{gathered}
$$

and this converts to separable.

Bernoulli:

$$
y^{\prime}+p(t) y=f(t) y^{n} \quad(n \neq 0,1) .
$$

Substitute

$$
v=y^{1-n}
$$

so

$$
v^{\prime}=(1-n) y^{-n} y^{\prime}
$$

Multiply DE by $(1-n) y^{-n}$, converts to linear.
Integrating Factor:
Seek $\mu(t, y)$ so that

$$
\mu M d t+\mu N d y=0
$$

is exact. No general rule to find μ, but often, if

$$
\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) / N=p(t) \quad(\text { depends } \quad \text { only } \quad \text { on } \quad t)
$$

then

$$
\mu(t)=e^{\int p(t) d t}
$$

works. Similarly if

$$
\left(\frac{\partial N}{\partial t}-\frac{\partial M}{\partial y}\right) / M=h(y) \quad(\text { depends } \quad \text { only } \quad \text { on } \quad y) .
$$

Basic Theory

Picard's Theorem: If $f(t, y)$ and $\frac{\partial f}{\partial y}$ are continuous in an open rectangle $t_{1}<t<t_{2}, \quad y_{1}<y<y_{2},\left(t_{1}, y_{1} \quad\right.$ can $=-\infty, \quad$ or $\quad t_{2}, y_{2} \quad$ can $\left.=+\infty\right)$, and if $\left(t_{0}, y_{0}\right)$ lies in this rectangle, then the initial value problem

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

has a unique solution lying in this rectangle.

