AMAT 307 Fall 2006

DEs for Engineers

AMAT 307 Module 2: Linear Differential Equations

Courtesy: Dr. P. Zvengrowski

Outline

- \Rightarrow Algebra
- \Rightarrow Terminology
- \Rightarrow Superposition Principle
- \Rightarrow Linear Independence of Functions
- ⇒ Constant Coefficients
- ⇒ Exponential Shift Formula
- \Rightarrow Applications
- \Rightarrow Particular Solution, Undetermined Coefficients
- ⇒ Particular Solution, Variation of Parameters
- \Rightarrow Cauchy-Euler Type

1 Algebra:

Useful to recall determinants and methods to find roots (zeros) of polynomials, e.g. factorization of polynomials.

- If a is a root of a polynomial $p(\lambda)$, then λa is a factor. The remaining factor can be found by long division, or (more quickly) synthetic division.
- For any polynomial $p(\lambda) = a_n \lambda^n + ... + a_1 \lambda + a_0$, assuming a_j are real, complex roots occur in conjugate pairs $x \pm iy$.
- For $p(\lambda)$ as above, assuming all a_j are integers, then any rational root s/t (s, t integers) satisfies: s divides a_0 , t divides a_n .

2 Terminology:

Linear DE of order n has form $a_n(t)D^ny + ... + a_1(t)Dy + a_0(t)y = g(t)$, for short write $L(D) = a_n(t)D^n + ... + a_1(t)D + a_0(t)$, then L(D)y = g(t) is shorthand (operator) notation for the DE. If g(t) = 0, the DE is called homogeneous. If each function $a_j(t) = a_j$, a constant, we say the DE has constant coefficients and write $L(D) = p(D) = a_nD^n + ... + a_1D + a_0$, a polynomial in D. The polynomial $p(\lambda) = a_n\lambda^n + ... + a_1\lambda + a_0$ is then called the characteristic polynomial of the DE.

3 Superposition Principle:

- (1) If y_1, y_2 are solutions of the homogeneous DE L(D)y = 0, then so is $y = Ay_1 + By_2$ a solution.
- (2) If y_c is any solution of L(D)y = 0 and y_p any solution of L(D) = g(t), then $y = y_c + y_p$ is a solution of L(D)y = g(t).
- (3) Strategy for finding the general solution of L(D)y = g(t) is to find the general solution y_c for L(D)y = 0 (with n arbitrary constants), then find any particular solution y_p for $L(D)y_p = g(t)$, and finally take $y = y_c + y_p$ as the general solution for L(D)y = g(t).

4 Linear Independence of Functions:

The Wronskian $W(f_1, ..., f_n) = W(t)$ is the $n \times n$ determinant having first row $f_1(t), ..., f_n(t)$, second row $f'_1(t), ..., f'_n(t)$, etc. If $W(t) \neq 0$ (for any value of t) then $f_1, ..., f_n$ are linearly independent. For functions $f_1, ..., f_n$ arising as solutions of an n'th order linear homogeneous DE, they are linearly independent iff $W(t) \neq 0$. In that case $\{f_1, ..., f_n\}$ is called a fundamental set of solutions.

Abel's Theorem can often simplify the calculation of Wronskians. If $\{f_1, ..., f_n\}$ is a fundamental solution set of the DE $1 \cdot D^n y + p_{n-1} D^{n-1} y + \cdots + p_1(t)Dy + p_0(t)y = 0$, each $p_j(t)$ continuous on an interval a < t < b, then their Wronskian is given by

$$W(t) = W(t_0)e^{-\int_{t_0}^t p_{n-1}(s)} ds .$$

5 Constant Coefficients:

For $L(D) = p(D) = a_n D^n + ... + a_1 D + a_0$, to solve p(D)y = 0, find the roots of the characteristic equation $p(\lambda) = 0$. For each root λ_i , $e^{\lambda_i t}$ is a solution. By superposition $y = \sum c_i e^{\lambda_i t}$ is a solution. If all roots are distinct (n roots) this is the general solution. If some root is repeated, e.g., $\lambda_1, \lambda_1, \lambda_1$, then $c_1 e^{\lambda_1 t} + c_2 t e^{\lambda_1 t} + c_3 t^2 e^{\lambda_1 t}$ is a solution \Rightarrow general solution. For a complex conjugate pair $a \pm bi$, $c_1 e^{at} \cos bt + c_2 e^{at} \sin bt$ is a solution.

6 Exponential Shift Formula:

Useful theoretical tool

$$L(D)(e^{\lambda t}y) = e^{\lambda t}L(D+\lambda)y.$$

7 Applications:

Vibrating spring with friction $my'' + \gamma y' + ky = F_a(t)$

LRC electrical circuit $LQ'' + RQ' + \frac{1}{C}Q = V_s(t)$

Mathematically these applications are equivalent to the DE y'' + ay' + by = g(t), where $a \geq 0$, b > 0. The general behaviour of the solutions (for the homogeneous case g(t) = 0) depends on the discriminant $\Delta = a^2 - 4b$. If $\Delta > 0$ we have the *overdamped* case = exponential decay, if $\Delta = 0$ the *critically damped* case = temporary growth followed by exponential decay, and $\Delta < 0$ the *underdamped* case = oscillations.

8 Particular Solution, Undetermined Coefficients

Applicable only for constant coefficients linear DE p(D)y = g(t), when g(t) is formed from sums of products of functions t^n $(n \ge 0)$, e^{at} , $\sin bt$, $\cos bt$.

- 1) find y_c , i.e., solve P(D)y = 0, n arbitrary constants,
- 2) set up test y_p based on the terms in g(t), g'(t), g''(t),...,
- 3) if any terms in test y_p are part of y_p , multiply the affected terms (and only these terms) by the least t^m that eliminates this overlap,
- 4) substitute y_p into the DE, compare like terms to find the unknown constants in y_p .

9 Particular Solution, Variation of Parameters:

A very general method

L(D)y = g(t), where L(D) is any linear differential operator and g(t) any function

- 1) Make sure DE in standard form $L(D) = 1 \times D^n + ... + a_1(t)D + a_0(t)$, solve for y_c ,
 - 2) Write (taking n = 3 as example) $y_c = c_1 h_1(t) + c_2 h_2(t) + c_3 h_3(t)$,
 - 3) let $y_p = u_1(t)h_1(t) + u_2(t)h_2(t) + u_3(t)h_3(t)$,

4) solve for u'_1, u'_2, u'_3 from the equations

$$\begin{cases} h_1 u_1' + h_2 u_2' + h_3 u_3' &= 0 \\ h_1' u_1' + h_2' u_2' + h_3' u_3' &= 0 \\ h_1'' u_1' + h_2'' u_2' + h_3'' u_3' &= g(t), \end{cases}$$

5) integrate to get u_1, u_2, u_3 , then substitute back into 3).

10 Cauchy-Euler Type:

 $L(D)=t^n\times D^n+a_{n-1}t^{n-1}D^{n-1}+\ldots+a_1tD+a_0$. Can solve L(D)=0 using $y=t^r$ as test solution. For n=2, say $L(D)=t^2D^2+atD+b$, the (quadratic) equation for r is $r^2+(a-1)r+b=0$. If repeated roots r_1,r_1 , get $y_c=At^{r_1}+Bt^{r_1}\ln t$. If complex roots $r=c\pm di$, get $y_c=At^c\cos(d\ln t)+Bt^c\sin(d\ln t)$. For y_p use variation of parameters, and do not forget to first divide the DE by t^n .