AMAT 309 L01

Winter 2004 MIDTERM 50 Minutes

NAME: ______ ID: _____

- 1. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{r} = \mathbf{r}(t)$ be vectors in \mathbb{R}^3 . For each of the following, answer with one of the words "vector, scalar, meaningless." [10]
 - (a) $2\mathbf{u} (\mathbf{v} \times \mathbf{w})$
 - (b) $2\mathbf{u} (\mathbf{v} \bullet \mathbf{w})$
 - (c) $2\mathbf{u} \bullet (\mathbf{v} \times \mathbf{w})$
 - (d) $(\mathbf{u} \bullet \mathbf{w}) \cdot (\mathbf{u} \times \mathbf{w})$
 - (e) $\mathbf{r} \times (\mathbf{r}' \bullet \mathbf{r}'')$
- 2. For each of the following answer True or False. In (a), (b), \mathbf{v} , \mathbf{w} denote any vectors in \mathbb{R}^n . [20]
 - (a) $\parallel c \cdot \mathbf{v} \parallel = c \cdot \parallel \mathbf{v} \parallel$.
 - (b) $\| \mathbf{v} + \mathbf{w} \| = \| \mathbf{v} \| + \| \mathbf{w} \|$.
 - (c) At a point where $\kappa = 0$, $\mathbf{a} \times \mathbf{T} = \mathbf{0}$.
 - (d) At a point where $\kappa = 0$, $\mathbf{a} \times \mathbf{N} = \mathbf{0}$.
 - (e) If $a_T = 3$ and $a_N = 4$, then a = 5.
 - (f) If $\mathbf{r}'''(t) = \mathbf{0}$, then $\tau = 0$.
 - (g) For z = f(x, y), ∇f will be orthogonal to the level curves.
 - (h) If

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

for every straight line path approaching (a, b), then this limit exists and equals L.

- (i) If the level curves of z = f(x, y) are all circles, then the corresponding surface is a surface of revolution.
- (j) For any surface of revolution, the level curves are circles.

3. Let
$$z = f(w, x, y)$$
 and $w = s^2 - t^2$, $x = s + t$, $y = 3s - t$.
Determine $z_s(-3, 3, 1)$, given $f_1(-3, 3, 1) = 1$, $f_2(-3, 3, 1) = 5$, $f_3(-3, 3, 1) = -1$, and $f_1(0, 1, 2) = 3$, $f_2(0, 1, 2) = 4$, $f_3(0, 1, 2) = -2$. [20]

4. Determine, if it exists,

$$\lim_{(x,y)\to(1,0)} \frac{x^2y - 2xy + y}{x^2 + 9y^2 - 2x + 1} .$$

[10]

5. (a) Identify and make a rough sketch of the surface $x^2/4 + y^2 = z^2/4 + 1.$ [10]

(b) Find the equation of the tangent plane to this surface at [10] P=(-2,1,2).

6. (a) Determine κ and τ for the curve $\mathbf{r}(t) = \langle t^3, -t^2, t^4 \rangle$. [15]

(b) Determine κ , τ for this curve at the point P = (-1, -1, 1). [5]

SOLUTIONS

Question 1: vector, meaningless, scalar, vector, meaningless

 ${\bf Question~2:~False, False, True, False, False, False, False}$

Question 3: First note that w = -3, x = 3, y = 1 implies s = 1, t = 2.

$$z_{s} = \frac{\partial z}{\partial s} = \frac{\partial z}{\partial w} \frac{\partial w}{\partial s} + \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$
$$z_{s} = \frac{\partial z}{\partial s} \cdot 2s + \frac{\partial z}{\partial x} \cdot 1 + \frac{\partial z}{\partial y} \cdot 3$$

Now evaluating we get $z_s = 1 \cdot 2 + 5 \cdot 1 + (-1) \cdot 3 = 4$.

Question 4: First use a little algebra to write in a little simpler form:

$$\lim_{(x,y)\to(1,0)} \frac{y(x-1)^2}{(x-1)^2+9y^2} .$$

Now make the substitution $x-1=r\cos\theta,\ 3y=r\sin\theta$. It reduces to

$$\frac{1}{3}\lim_{r\to 0}(r\sin\theta\cos^2\theta) = 0.$$

Question 5: (a) It's a hyperboloid of 1 sheet. The sketch is best made by first drawing the "waist" of the hyperboloid, which is the ellipse $x^2/4 + y^2 = 1$ in the xy-plane, then roughly filling the rest.

(b)
$$x - 2y + z + 2 = 0$$

Question 6: (a) Find first $\mathbf{v}, \mathbf{a}, \mathbf{a}'$, and then $v, \mathbf{v} \times \mathbf{a}, \parallel \mathbf{v} \times \mathbf{a} \parallel$. Then the standard formulas give

$$\kappa = \frac{2\sqrt{36t^4 + 64t^2 + 9}}{|t|(16t^4 + 9t^2 + 4)^{3/2}}, \qquad \tau = \frac{12}{t(36t^4 + 64t^2 + 9)}.$$

(b) Substituting t = -1 gives $\kappa = 2\sqrt{109}/29^{3/2}, \ \tau = -12/109$.