AMAT 309 L02 Winter 2003 Quiz 1 30 Minutes

N	NAME:	ID:
1.	A particle moves along the path $\mathbf{r} = \langle t^2, -t^2, 2 \rangle$. speed, and acceleration for any value of t . Also de	•
	the particle.	[25]

- 2. For each of the following answer True or False. [25]
 - (a) If an automobile drives along a highway at constant speed 105 km/hr, then its acceleration **a** is zero.
 - (b) If an automobile drives along a circular track at constant speed 205 km/hr, then its acceleration **a** is constant.
 - (c) If an automobile drives along a circular track at constant speed 205 $\,$ km/hr then the magnitude a of its acceleration is constant.
 - (d) The curve $\mathbf{r} = \langle a \cos t \sin t, a \sin^2 t, a \cos t \rangle$ lies on a sphere.
 - (e) The set of all points (x, y, z) satisfying the two equations $a_1x + b_1y + c_1z = d_1$, $a_2x + b_2y + c_2z = d_2$ is a line.

3. A particle moves along the curve $y=x^3$, $z=x^2$ with constant vertical speed dz/dt=4. Find both its velocity and acceleration at the point P=(2,8,4). [Hint: A convenient parametrization can be found by taking $x=ct^{1/2}$ for the appropriate value of c.] [25]

4. Describe and sketch (roughly) the surface given by
$$x^2-4y-z^2+y^2+12-6x=0. \hspace{1.5cm} [25]$$