AMAT 309 MIDTERM EXAM SOLUTIONS

Useful Formulas
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1. (3) For what values of a does v = 2 4 axy? satisfy v, + vyy = 07 We calculate

v, = 32 + ay?, v, = 2azy, so

Vogp + Vyy =62 +2a0 =0 & a= 3.

. (3) Find the unit tangent vector and the binormal to the curve r(¢) = sin(¢)i+ cos*(¢)j.
We calculate v(t) = r'(¢) = cos(t)i — 2 cos(t) sin(t)j, so
"t 1
= r/( ) = = [cos(t)i — 2 cos(t)sin(t)j] =
|I‘ (t)| [cosz(t) + 4 COSQ(t) SiHQ(t)] 2

T

= ! [i — 2sin(?)]].

714+ 4sin2(t)

To find B, we first calculate a(t) = r'’(¢) = —sin(¢)i — 2 cos()j, then

vV X a
B(t) =
(*) |v x a|
which is equal to the vector
i J k
det | cos(t) —2cos(t)sin(¢) 0
—sin(t) —2cos(t) 0

divided by its magnitude. However, because of the zeros in the last column, the only
nonzero component of this cross-product is the k component, and it is —2 cos(t) cos(2t)—
sin(?) sin(2t). Since B has length 1, B = —k. The minus sign comes from the two mi-
nus signs in that last formula, which tell us that a (—1) can be factored out before
normalizing the vector to length 1-or equivalently, that the vector points DOWN the
z-axis. (analagous to the fact that if you normalize the vector —3k, you get —k).



3. (3) Given the function f(x,y,z) = ye™ _ find (a) the gradient of f, (b) the directional
derivative of this function at the point (3,2,0) in the direction of the vector from that
point to the point (2,3, 1).

Solution: (a)
- . . 2, 2, 2 2
V= fol+ fi+ fok = 20zye™i4 ™ j+ 2 ye™ k.

(b) V_>f (3,2,0) = 1j + 18k,. The direction we want is (2—3)i+ (3 —2)j+ (1 —0)k

and we normalize to get

u ! i+ ! j + ! k
:——1 B — [ .
3T AT
then 1 1 1 19
ﬁ.
D3t :Vf‘l_z: [1j + 18K] - —%i+7§j+7§ :—\/g.

4. (4) Find the arclength of the curve
r(t) = 2t + t%j + In(t)k, 1 <t<10.

Solution. Arclength is the integral of speed:

1
2

10 | — 10 1 2
E :/ r’(t)‘ dt :/ 22+ (2t)* + <;> dt =
1 1
10 1 _I_ 2t2 10
:/1 —dt = [In(?) + £*]," = In(10) + 99.

5. (4) Find the equation of the tangent plane to the surface z = sin(xy) at the point
(1,7,0).

Solution: A normal to the surface z = f(x,y) is Kf: foi+ f,d + (=1)k, and evaluated
at the given point this is

—

N=ycos(xy)i+ xcos(zy)j —k = —mi—1j — 1k.
Then the equation of the plane through the point (1,7,0) with this normal is
—m(r—1)—lHy—m)+(=1)(z—0)=0.
6. (3) Given the function f(x,yz) = €"¥*, find

»Pf
0x0ydz

Solution: We calculate:

fo = yze™*, foy = (fl,)y = [Z + xyZQ} " foye = (fxy)z =

= [1 + 2zyz + vyz + :1;2y222] eV = [1 + 3zyz + :1;2y222] eV,



7. (6) Given the formula k = vxal 5 & curve in R?, derive the formula for the curvature

ME
of a plane curve y = y(«) : w(x) = Lﬂm
[14+(())7]
Solution: Any plane curve y = f(x) can be interpreted as a space curve, using = as
the parameter:

F(x)=ait f(2)j 40k, =7 (2) =1+ fl(a)i+ 0k, =7 (2)=0i+ f(x)j + Ok.

We plug these vectors into the given formula for the curvature of a space curve

1 st s

1 J k "
w(z) = —; ro(z)x o (x)] = 1 - dot | 1 ) o ||= |f"(2)] 2
T @) L+ @ Lo @) o) (@)

8. (7) Let u, v be defined as functions of & and y by the equations
x:u2+v2, y:u3—v3,
in a neighborhood of the point (x,y,u,v)=(2,0,1,1) = F.
(a) Show that the functions u(x,y) and v(x,y) exist near Fy.

(b) Find u, and w, at Fp.
(c) Write down the Taylor Polynomial of degree one at Fy for the function u(z,y).

Solution: (a) We can solve for u and v as functions of & and y near the given point if
the Jacobian evaluated at that point is nonzero:

ox,y) 2u 20 | 2 2]
o) det [ 3 302 ] = det [ 3 _3 ] = —12.

(b) We differentiate the given equations with respect to x to get:
1 = 2uu, + 2vv,. 0 = 3u2uy — 3v2vy,

which we evaluate at Fy to get

1 1

— Uy = —.

4 4

To find u,, we differentiate the original equations with respect to y and evaluate at F
to get:

1 =2u, 4+ 2v;, 0 =3u, — 3v;, = u, =

1 1
0 = 2uu,+2vv,, 1 = 3u’u,—3v*, = 0= 2u,+2v,, 1 =3u,~3v, = u, = G vy = —5
Thus
1 1
Up = — and u, = —.
4 6

(c) Using these values of u, and w,, the Taylor Polynomial of degree one for u about
PO is
— . . L, 1. . .
u(Po)+ u (Fo) - [z =2)i+ (y = 0)f] = |1+ Ji+ j) - [(w = 2)i+ (y — 0)j] =

1D+ b

[T



9.

10.

(5) Show that
cos(x)
cos(y)
for (x,y) near (0,0). (Hint: Taylor)

Solution: Let f(x,y) = cos(z) * We want to calculate the Taylor polynomial of degree

cos(y)

two about (0,0), so we compute (at (0,0):

sin(x)
= — = 0’ y =
fo= oy

cos(x)sin(y)
o5t (y)

=0.

So the linear approximation is zero . Now we go to the quadratic terms:

cos(x)

rx _ — _— —17 - _—
f COS(y fl/

Jyy = cos(x) [tan(y) sec(y)], = cos(x) [sec®(y) + tan®(y) sec(y)] = 1.
Then the quadratic Taylor polynomial for f about (0,0) is

_sin(:z;) sin(y)

=0
cos?(y)

~—

1-|-0-(:1;—0)—|—0-(y—0)—|—l(—1)-(:1;—O)Z—I-EO-(:I;—O)(y—O)—I-l(l)-(y—0)2:

2! 2! 2!
1
— 1 = 2 2 ]
5 [v* =]
Alternate solution: We know from one dimensional calculus that cos(u) ~ 1 — %uz, SO

cos(x) N 1 — %:1;2

cos(y) Y- %yy

and we know from high school study of geometric sums that for |r| < 1

=1l4r4+r+- 147,

1—r

SO
cos(z) ~ |1 — l:Jc2 1+ in ,
cos(y) 2! 2!

and if we mulitply out, keeping only terms up to quadratic, we get the desired approx-
imation.

(6) Locate and classify the critical points of f(z,y) = zye”¥. Some help:
for =y(2+ )" fo, = (1 4+ 2)(1+y)e™tY, f, = 2(2+y)e" .
Solution: We calculate the first partials:
fo=y(L4a)e™ fy = a1+ y)eH),

These both vanish at the points (0,0) and (—1,—1). We form the Hessian at each
point. At (0,0) we have



0 1
n={va)
and det(H) = —1. Since det(H) is the product of the two eigenvalues of H, they differ

in sign and so (0,0) is a saddle.
At the point (=1, —1) we calculate

—e? 0
0 —e 2 |7

and this is a diagonal matrix with its eigenvalues displayed on the diagonal. Since both
are negative, (—1, —1) is a maximum.

11. (6) Let
m(z,t) )
fla,t) = /0 e du,where m(x,t) = ng.
Show that
(a) ) )
— i) I — @
fx € 8:1; 9 ft € 6t
(b)
LT _0f
dz? Ot

(the heat equation)

Solution: (a) We want to use the Fundamental Theorem of Calculus to deal with the
derivative of the integral. To be very clear what’s going on here, we define a function

of one variable F' by
4 2
F(q) = / e du.
0

Then F'(q) = % — ¢ % by the Fundamental Theorem of Calculus, and flz,t) =
F(m(:z;, t))
Therefore, by the Chain Rule,

af 0 om 20m
— = —F ) =F(m)— =" —
dJdx Oz < (m(:z;, ))> (m) gr ¢ oz’
which is what we’re required to show. A similar calculation holds for 2

at"
(b) We finish the calculation of f; started in (a):

ft — e—m2(x,t) om _ _e—m2(x,t) Z

ot Wt

Now we differentiate f, with respect to a:

i 2m(1 )[amrJra?m () . ( ! >2+0
e = 4 —2m(t, ) | =— e V= |——= | —=
ox Ox? Vit \2Vkt

Comparing kg% to % we see they are equal.

—m2(ac,t)‘




