1. Find and classify all critical points of $f(x,y) = 2x^4 - xy^2 + 2y^2$.

We compute $f_x = 8x^3 - y^2$, $f_y = -2xy + 4y$, and set both equal to zero to find the critical points:

$$8x^3 = y^2, \qquad 2y[2-x] = 0.$$

This pair of equations has the solutions $x=2,\ y=\pm 8$ and $y=0,\ x=0$. To classify, these points we first need the second partials:

$$f_{xx} = 24x^2$$
, $f_{xy} = -2y$, $f_{yy} - 2x + 4$.

At 0,0), the Hessian is

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & 4 \end{array}\right],$$

with eigenvalues 0 and 4, so we have no information.

At (2, -8), we have

$$\left[\begin{array}{cc} 96 & 16 \\ 16 & 0 \end{array}\right],$$

and the determinant is negative, so it is a saddle. At (2,8), we have

$$\left[\begin{array}{cc} 96 & -16 \\ -16 & 4 \end{array}\right],$$

which also has negative determinant, so it is a saddle.

2. Find all extrema of $f(x,y) = x^3 + y^3$, subject to the constraint x + y = 2. Restrict your search to $0 \le x$ and $0 \le y$.

We use Lagrange multipliers:

$$3x^2 = \lambda$$
, $3y^2 = \lambda$, $x + y = 2$.

Then $x^2 = y^2$, so $x = \pm y$, since x + y = 2 we must have x = y. Thus x = 1, y = 1. At this point f(1,1) = 2. (This is in fact a minimum, the max is attained at the boundary point (0,2) and (2,0), and is not discovered by Lagrange.)

3. Find the shortest distance from the origin to the surface $x^2y^2z=1$.

We are trying to minimize $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraint $x^2y^2z = 1$. So we use Lagrange:

$$2x = 2\lambda xy^2z$$
, $2y = 2\lambda x^2yz$, $2z = \lambda x^2y^2$, $x^2y^2z = 1$.

If we multiply equation 1 by x, equation 2 by y, and the third equation by z, in each case the last equation (the constraint) can be used to reduce the new right hand side to λ :

$$x^2 = \lambda$$
, $y^2 = \lambda$, $2z^2 = \lambda$, $x^2y^2z = 1$.

If we use the right side of the first three equations to form the product x^2y^2z , we conclude that

$$\lambda \lambda \frac{\sqrt{\lambda}}{\sqrt{2}} = 1 \implies \lambda = 2^{\frac{1}{5}} \implies$$
$$\Rightarrow x = \pm 2^{\frac{1}{10}}, \qquad y = \pm 2^{\frac{1}{10}}, \qquad z = 2^{-\frac{2}{5}}.$$

(z must be positive by the constraint equation). So we have the critical points

$$(2^{\frac{1}{10}}, 2^{\frac{1}{10}}, 2^{-\frac{2}{5}}), \quad (-2^{\frac{1}{10}}, 2^{\frac{1}{10}}, 2^{-\frac{2}{5}}), \quad (2^{\frac{1}{10}}, -2^{\frac{1}{10}}, 2^{-\frac{2}{5}}) \quad (-2^{\frac{1}{10}}, -2^{\frac{1}{10}}, 2^{-\frac{2}{5}}).$$

The distance function has the same value at each of these points,

$$f = 2^{\frac{1}{5}} + 2^{\frac{1}{5}} + 2^{-\frac{4}{5}} = 2^{\frac{6}{5}} - 2^{-\frac{4}{5}} = \frac{3}{2^{\frac{4}{5}}}.$$