AMAT 309 Assignment 2 Winter Term, 2006

M. Hamilton, J. Macki

We encourage students to work together and to share ideas, and to talk to your instructors about difficulties. However, your write-up should be your own. Also, we encourage you to pay attention to presentation: solutions should be clear, logical, and well-presented. Pictures from Maple or other graphing devices or software are perfectly acceptable; however, keep in mind that you will not have these aids on exams, so simple graphing is a skill you need to develop.

1. (8) Find and classify the extrema of $h(x, y)=\sin (x) \sin (y) \sin (x+y)$ on the square $[0, \pi] \times[0, \pi]$. (Keep in mind there is a boundary to check out).
2. (8) Find those points on the curve of intersection of the surfaces $x^{2}-x y+y^{2}-z^{2}=1$ and $x^{2}+y^{2}=1$ which are nearest the origin. (Hint: what was Lagrange's first name?)
3. (8) Find the volume of the finite solid bounded by the surfaces

$$
a z=x^{2}+y^{2}, \quad x^{2}+y^{2}+z^{2}=2 a^{2} .
$$

4. (8) Set up the correct limits for both iterated integrals for $\iint f(x, y) d A$ over D if D is:
(a) The parallelogram with sides

$$
x=3, x=5,3 x-2 y+4=0,3 x-2 y+1+0 .
$$

(b) The triangle with sides $y=0, y=x, y=4-x$.
(c) The finite domain cut out by the curves $y=x^{2}, y=4-x^{2}$.
(d) The region bounded by the curve $\frac{(x-2)^{2}}{4}+\frac{(y-3)^{2}}{9}=1$.
5. (8) Transform the following to polar coordinates, and evaluate:
(a)

$$
\int_{0}^{2} d x \int_{0}^{\sqrt{4-x^{2}}} \ln \left(1+x^{2}+y^{2}\right) d y
$$

(b)

$$
\iint \arctan \left(\frac{y}{x}\right) d x, d y
$$

over the region defined by

$$
1 \leq x^{2}+y^{2} \leq 9, \quad \frac{x}{\sqrt{3}} \leq y \leq x \sqrt{3}
$$

6. (8) Change to cylindrical or spherical coordinates and evaluate:
(a)

$$
\int_{0}^{2} d x \int_{0}^{\sqrt{2 x-x^{2}}} d y \int_{0}^{a} z \sqrt{x^{2}+y^{2}} d z
$$

(b) The volume of the solid that lies above the cone $\phi=\frac{\pi}{3}$ and below the sphere with equation $\rho=4 \cos (\phi)$
7. (4) Prove that the function

$$
y(x)=\int_{0}^{\infty} \frac{e^{-x z}}{1+z^{2}} d z
$$

satisfies the differential equation $y^{\prime \prime}(x)+y=\frac{1}{x}$.
8. (4) Given a region $D \subset \mathbb{R}^{2}$ in the plane and a function of two variables $f(x, y)$, let R be the region in space above D and below the graph of f. Then we have two expressions for the volume of R, namely

$$
\iint_{D} f(x, y) d A \quad \text { and } \quad \iiint_{R} d V
$$

Show that these two expressions are equal.
9. (8) Let $f(x, y)=3 x^{4}-4 x^{2} y+y^{2}$
(a) Show that on each line $y=m x$, the function has a minimum at 0 .
(b) Show that $(0,0)$ is not a minimum of f.
(c) Make a sketch (or use Maple) showing those points (x, y) where $f(x, y)>0$ and $f(x, y)<0$.

Hint: If you have trouble with part (b), perhaps try part (c) first.

