
1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the
square[0, π] × [0, π]. (Keep in mind there is a boundary to check out).

Solution:

hx = cosx sin y sin(x + y) + sinx sin y cos(x + y) = 0 (1)

hy = sinx cos y sin(x + y) + sinx sin y cos(x + y) = 0 (2)

Notice the second term in each equation is the same, so

cosx sin y sin(x + y) = sinx cos y sin(x + y). (3)

Case I. sin y = sinx = 0 does not occur on the interior of [0, π] × [0, π],
only on the boundary, which we’ll deal with later.

Case II. cos x = 0 = cos y =⇒ x = y = π/2. In the original equations,
this gives for (1) −1 = 0 and (2) −1 = 0 so it’s no good.

Case III. sin(x + y) = 0 implies x + y = π (in this domain).
y = π − x =⇒ sin y = sinx, cos y = − cos x

(1) cos x sinx · 0 + sin2 x(−1) = 0 (4)

(2) − sinx cos x · 0 + sin2 x(−1) = 0 (5)

which together imply x = 0 or π, which is on the boundary.
So, with sin(x + y) 6= 0, we can divide (3) to get

cos x sin y − sinx cos y = 0 (6)

sin(x − y) = 0 =⇒ x − y = 0 in interior of square (7)

i.e. x = y (8)

Thus from (1) and (2),

cos x sinx sin 2x + sinx sinx cos 2x = 0

We are assuming here that sinx 6= 0 (the case sinx = 0 was dealt with in
Case I), and so we can divide it out to get

cos x sin 2x + sinx cos 2x = 0

i.e. sin 3x = 0, so x = π/3 or 2π/3. So our critical points are P1 = (π
3 , π

3 )
and P2 = (2π

3 , 2π
3 ).

Plugging these points back into (1) and (2), and remembering our 1-2-
√

3
triangle, we see they both work.
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Then

h(P1) =
√

3
2 ·

√
3

2 ·
√

3
2 = 3

√
3

8 MAX

h(P2) =
√

3
2 ·

√
3

2 · −
√

3
2 = −3

√
3

8 MIN

Also check the boundary: On the boundary, one of x or y is either 0 or
π, so h ≡ 0 on the boundary. Therefore the max and min are at the points
found above.

2. Find those points on the curve of intersection of the surfaces
x2 − xy + y2 − z2 = 1 and x2 + y2 = 1 which are nearest the origin.
(Hint: what was Lagrange’s first name?)

Solution: The function to be minimized here is the distance
√

x2 + y2 + z2,
or equivalently (by the usual trick) the square of the distance, which we’ll
call f = x2 + y2 + z2. The two constraints are g = x2 − xy + y2 − z2 − 1 = 0
and h = x2 + y2 − 1 = 0.

Then the Lagrangian function is L(x, y, z, λ, µ) = f + λg + µh; looking
for a critical point of L yields the five (!) equations

2x = λ(2x − y) + µ(2x) (9)

2y = λ(−x + 2y) + µ(2y) (10)

2z = λ(−2z) + µ(0) (11)

x2 + y2 = 1 (12)

x2 − xy + y2 − z2 = 1 (13)

(14)

Note that (12) and (13) imply

−xy − z2 = 0. (15)

Now, (11) implies λ = −1 OR z = 0.
Case I: z = 0. Then (15) implies xy = 0. But x2 + y2 = 1, so possible
points are

P1 = (0, 1, 0), P2 = (0,−1, 0), P3 = (1, 0, 0), P4 = (−1, 0, 0)

Check P1 in (9) and (10) and get

0 = −λ, 2 = 2λ + 2µ
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so λ = 0, µ = 1 will work. For P2, we get

0 = −λ, −2 = λ(−2) + µ(−2)

which works as well. And P3 and P4 check out as well. Therefore P1, P2,
P3, and P4 are candidates, each at distance 1 from the origin.
Case II: λ = −1. Then (9) and (10) become

(4 − 2µ)x = y (16)

(4 − 2µ)y = x, (17)

and we also have −xy − z2 = 0, x2 + y2 = 1.
If either x or y is zero, then (16) or (17) implies that the other is zero,

which contradicts them being on the circle. So assume neither one is zero.
Then we can divide (16) and (17) to get

x

y
=

y

x
=⇒ x2 = y2.

Since x2 + y2 = 1, we have x = ± 1√
2

and y = ± 1√
2
. Since z2 = −xy, we

have four possibilities:

(

1√
2
,− 1√

2
, 1√

2

)

,
(

1√
2
,− 1√

2
,− 1√

2

)

,
(

− 1√
2
, 1√

2
, 1√

2

)

,
(

− 1√
2
, 1√

2
,− 1√

2

)

,

each of which has distance
√

3
2 from the origin.

Thus P1 – P4 found before are the closest points.

(Note: The reference to Lagrange’s first name is U of Alberta convention
for hints. Lagrange’s actual first name is not important.)

3. Find the volume of the finite solid bounded by the surfaces

az = x2 + y2, x2 + y2 + z2 = 2a2.

Solution: The surfaces intersect in the curve x2 + y2 = a2; z = a, as can
be seen by solving the two equations simultaneously. Thus the volume is

V = 4

∫ a

0

∫

√
a2−y2

0

∫

√
2a2−x2−y2

(x2+y2)/a
1 dz dx dy
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(the 4 comes from symmetry, and for the rest, draw a picture. . . which I
can’t duplicate easily here!).

This is easier in cylindrical coordinates, where it can be written (remem-
bering that dV in cylindrical coordinates is r dr dz dθ)

V = 4

∫
π
2

0

∫ a

0

∫

√
2a2−r2

r2

a

r dz dr dθ

= 4

∫
π
2

0
dθ

∫ a

0

(

√

2a2 − r2 − r2

a

)

r dr

= 4 · π
2 ·

[

−(1
3

√

2a2 − r2)3/2 − r4

4a

]a

0

= 2π
(

−a3

3 + 1
323/2a3 − a3

4

)

= 2πa3

3

(

2
√

2 − 7
4

)

4. Set up the correct limits for both iterated integrals for
∫∫

f(x, y) dA over
D if D is:

1. The parallelogram with sides

x = 3, x = 5, 3x − 2y + 4 = 0, 3x − 2y + 1 + 0.

2. The triangle with sides y = 0, y = x, y = 4 − x.

3. The finite domain cut out by the curves y = x2, y = 4 − x2.

4. The region bounded by the curve (x−2)2

4 + (y−3)2

9 = 1.

Solution: For this question you really need to draw diagrams, which I don’t
have on the computer, so I’ll just give the answers. . .

(a) The intersection points are (5, 8), (5, 19
2 ), (3, 5), and (3, 13

2 ).

(i)

∫ 13

2

5
dy

∫
−1+2y

3

3
f dx +

∫ 8

13

2

dy

∫
−1+2y

3

−4+2y

3

f dx +

∫ 19

2

8
dy

∫ 5

−4+2y

3

f dx

(ii)

∫ 5

3
dx

∫ 3x+4

2

3x+1

2

f dy

(b) (i)

∫ 2

0
dy

∫ 4−y

y
f dx

(ii)

∫ 2

0
dx

∫ x

0
f dy +

∫ 4

2
dx

∫ 4−x

0
f dy
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(c) (i)

∫

√
2

−
√

2
dx

∫ 4−x2

x2

f dy

(ii)

∫ 2

0
dy

∫

√
y

−
√

y
f dx +

∫ 4

2
dy

∫

√
4−y

−
√

4−y
f dx

(d) (i)

∫ 6

0
dy

∫ 2+2
√

1−(y−3)2/9

2−2
√

1−(y−3)2/9
f dx

(ii)

∫ 4

0
dx

∫ 3+3
√

1−(x−2)2/4

3−3
√

1−(x−2)2/4
f dy

5. Transform the following to polar coordinates, and evaluate:

1.
∫ 2

0
dx

∫

√
4−x2

0
ln

(

1 + x2 + y2
)

dy,

2.
∫∫

arctan
(y

x

)

dx, dy

over the region defined by

1 ≤ x2 + y2 ≤ 9,
x√
3
≤ y ≤ x

√
3.

Solution: (a) We’re integrating over the part of the disc of radius 2 that
lies in the first quadrant.

∫ 2

0
dx

∫

√
4−x2

0
ln

(

1 + x2 + y2
)

dy, =

∫ π
2

0
dθ

∫ 2

0
ln(1 + r2)r dr dθ

= π
2 · 1

2

∫ 5

1
ln(u) du letting u = 1 + r2

= π
4

(

u lnu − u
)

]5

1
= π

4

(

5(ln 5 − 1) + 1
)

= π
4

(

5 ln 5 − 4
)

(b) Again, draw a diagram. The region (call it R) lies between the circles
of radius 1 and 3, and between the lines y = x√

3
and y = x

√
3, which
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correspond to θ = π
6 and θ = π

3 , respectively. Thus

∫∫

R
arctan

(y

x

)

dx dy =

∫ π
3

π
6

∫ 3

1
θr dr dθ

=

∫ π
3

π
6

θ
[

1
2r2

]3

1
dθ =

∫ π
3

π
6

θ
(

9
2 − 1

2

)

dθ

= 4
(

1
2θ2

∣

∣

∣

π
3

π
6

)

= 2
(

(

π
6

)2 −
(

π
3

)2
)

= π2

6

6. Change to cylindrical or spherical coordinates and evaluate:

1.
∫ 2

0
dx

∫

√
2x−x2

0
dy

∫ a

0
z
√

x2 + y2 dz,

2. The volume of the solid that lies above the cone φ = π
3 and below the

sphere with equation ρ = 4 cos(φ)

Solution: (a) The fact that we have a x2 + y2 and a plain z appearing
suggests that we use cylindrical coordinates. The z integral, therefore, is
unchanged; what we need is to figure out the integral in x and y. The region
in x and y over which we’re integrating is 0 ≤ x ≤ 2, 0 ≤ y ≤

√
2x − x2. To

find the curve y =
√

2x − x2, complete the square:

y =
√

2x − x2

so y2 = 2x − x2 = 1 − (x − 1)2,

and so (x − 1)2 + y2 = 1

This is the circle of radius 1, centred at (1, 0), which has polar equation r =
2 cos θ. Since we’re taking the positive square root, the region of integration
is the top half of this circle (see figure below). (If you don’t remember
that equation in polar coordinates, take the second line of the above set of
equations and convert to r and θ:

r2 sin2 θ = 2r cos θ − r2 cos2 θ

r2 = 2r cos θ

so r = 0 or r = 2 cos θ)
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Thus the region is 0 ≤ r ≤ 2 cos θ, for 0 ≤ θ ≤ π
2 . If it’s not clear that this

is the proper range of θ, consider the following diagram:

where some lines of constant θ have been marked.
Therefore, the integral becomes (remembering that dz dy dx = r dz dr dθ)

∫ 2

0

∫

√
2x−x2

0

∫ a

0
z
√

x2 + y2 dz dy dx

=

∫ π
2

0

∫ 2 cos θ

0

∫ a

0
zr r dz dr dθ =

∫ π
2

0

∫ 2 cos θ

0

a2

2 r2 dr dθ

=

∫ π
2

0

a2

6 r3
]2 cos θ

0
dθ =

∫ π
2

0

8a2

6 cos3 θ dθ

= 4a2

3

∫ π
2

0
(1 − sin2 θ) cos θ dθ = 4a2

3

∫ π
2

0
cos θ − sin2 θ cos θ dθ

= 4a2

3

(

sin θ − 1
3 sin3 θ

)

]
π
2

0
= 4a2

3

(

1 − 1
3

)

= 8a2

9

(b) The sphere ρ = 4 cos φ has radius 2 and sits “on top” of the z-axis (i.e.
it has centre (0, 0, 2)). The surface φ = π

3 is a cone. The volume element in
spherical coordinates is ρ2 sinφdρ dφ dθ, and so the volume is

V =

∫ 2π

0

∫ π
3

0

∫ 4 cos φ

0
ρ2 sinφdρ dφ dθ

= 2π

∫ π
3

0

1
3ρ3

]4 cos φ

0
dφ

= 2π
3

∫ π
3

0
64 cos3 φ sinφdφ = 2π

3

(

−64
4 cos4 φ

)

]
π
3

0

= 2π
3

64
4

(

1 −
(

1
2

)2
)

= 32π
3 · 15

16 = 10π.
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7. Prove that the function

y(x) =

∫ ∞

0

e−xz

1 + z2
dz

satisfies the differential equation y ′′(x) + y = 1
x .

Solution: If y(x) =

∫ ∞

0

e−xz

1 + z2
dz, then differentiating under the integral

sign, we have

y′(x) =

∫ ∞

0

∂

∂x

e−xz

1 + z2
dz

=

∫ ∞

0

−z e−xz

1 + z2
dz

and y′′(x) =

∫ ∞

0

z2e−xz

1 + z2
dz

Thus

y′′ + y′ =

∫ ∞

0

(1 + z2)e−xz

1 + z2
dz

=

∫ ∞

0
e−xz dz

= lim
T→∞

(

− 1
x

)

e−xz
]T

0

= lim
T→∞

(

1
x − e−xT

x

)

=
1

x

as required.

8. Given a region D ⊂ R
2 in the plane and a function of two variables

f(x, y), let R be the region in space above D and below the graph of f .
Then we have two expressions for the volume of R, namely

∫∫

D
f(x, y) dA and

∫∫∫

R
dV

Show that these two expressions are equal.

Solution: The region R can be described as {(x, y) ∈ D, 0 ≤ z ≤ f(x, y)}.
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Therefore the triple integral over R can be written as an iterated integral:

∫∫∫

R
dV =

∫∫

D

∫ f(x,y)

0
dz dA where dA is the area element in the xy plane

=

∫∫

D
z
]f(x,y)

0
dA

=

∫∫

D
f(x, y) dA

as required.

9. Let f(x, y) = 3x4 − 4x2y + y2

1. Show that on each line y = mx, the function has a minimum at 0.

2. Show that (0, 0) is not a minimum of f .

3. Make a sketch (or use Maple) showing those points (x, y) where f(x, y) >
0 and f(x, y) < 0.

Hint: If you have trouble with part (b), perhaps try part (c) first.

Solution: (a) If y = mx, then

f(x, y) = f(x,mx) = 3x4 − 4mx3 + m2x2,

and we can treat this by the usual methods for functions of one variable.
Differentiate:

f ′() = 12x3 − 12mx2 + 2m2x

and since f ′ = 0 at x = 0, there is a critical point at the origin. By the
one-variable Second Derivative Test,

f ′′(0) = 36x2 − 24mx + 2m
∣

∣

x=0
= 2m2 > 0

and so the origin is a minimum along the line y = mx. (Note that the line
m = 0 (i.e. y ≡ 0) also gives a minimum, since f(x, 0) = 3x4.) Also note
that the value of f here is f(0, 0) = 0.

(b) & (c) Following the hint, we consider points where f > 0 and f < 0.
Note that f factors as f(x, y) = (3x2 − y)(x2 − y), and so f(x, y) = 0

whenever y = 3x2 or y = x2. Furthermore, f is negative if x2 < y < 3x2

(and positive elsewhere). Put another way, the function f is zero on the two
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curves y = 3x2 and y = x2, negative between them, and positive everywhere
else.

Every neighbourhood of (0, 0) contains points between the curves y = x2

and y = 3x2, and thus contains points where f is negative. Therefore the
origin is not a miniumum of f .

Note: Many people said that the origin is not a minimum because the
Hessian is zero. This is not correct. If the Hessian is zero, that means that
the second derivative test gives us no information, which means just that:
we have no information, i.e. we can’t conclude anything. In particular, in
this example we cannot conclude that (0, 0) is not a minimum just because
the Hessian is zero. We have to look more closely at the behaviour of the
function.

(For example, the functions x4+y4, x4−y4, and −x4−y4 all have critical
points at the origin where the Hessian is zero. However, they all have differ-
ent behaviour there: minimum, saddle point, and maximum, respectively.
Thus when the Hessian is zero, it means we need to do more analysis.)
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