AMAT 309 Quiz 5 Solutions

1. Given a wire in the shape of the curve $\quad e^{t} \mathbf{i}+e^{2 t} \mathbf{j}, \quad 0 \leq t \leq \pi$ in \mathbb{R}^{2}, with density $d=x$ at a point (x, y), find the mass of the wire.

Solution: Mass is density times length, so here the mass is $\int_{\mathcal{C}} x d s$. For this curve, $\mathbf{r}^{\prime}=e^{t} \mathbf{i}+2 e^{2 t} \mathbf{j}$ and so $d s=\left|\mathbf{r}^{\prime}\right|=\sqrt{e^{2 t}+4 e^{4 t}} d t$. Thus the mass is

$$
\int_{\mathcal{C}} x d s=\int_{0}^{\pi} e^{t} \sqrt{e^{2 t}+4 e^{4 t}} d t
$$

Let $u=e^{t}$, so the integral becomes

$$
\int_{1}^{e^{\pi}} \sqrt{u^{2}+4 u^{4}} d u=\int_{1}^{e^{\pi}} u \sqrt{1+4 u^{2}} d u
$$

and another substitution $\left(v=1+4 u^{2}\right)$ gives

$$
\begin{aligned}
& \left.=\frac{1}{8} \cdot \frac{2}{3}\left(1+4 u^{2}\right)^{\frac{3}{2}}\right]_{5}^{e^{\pi}} \\
& =\frac{1}{12}\left(\left(1+4 e^{2 \pi}\right)^{\frac{3}{2}}-5^{\frac{3}{2}}\right)
\end{aligned}
$$

2. (a) Show that the vector field $\mathbf{F}=(y \cos x-\cos y) \mathbf{i}+(\sin x+x \sin y) \mathbf{j}$ is conservative by finding a potential ϕ for which $\boldsymbol{\nabla} \phi=\mathbf{F}$.
(b) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is any curve connecting $\left(0, \frac{\pi}{2}\right)$ and $\left(\frac{3 \pi}{2}, \pi\right)$.

Solution:

(a) If $\mathbf{F}=\boldsymbol{\nabla} \phi$, then $\frac{\partial \phi}{\partial x}=y \cos x-\cos y$. This tells us that $\phi=y \sin x-$ $x \cos y+g(y)$ for some function g of y only. Differentiating on y, we get $\frac{\partial \phi}{\partial y}=\sin x+x \sin y+g^{\prime}(y)$, which tells us that g is a constant, which we may as well take to be zero. Thus if $\phi=y \sin x-x \cos y$, then $\mathbf{F}=\boldsymbol{\nabla} \phi$ and thus is conservative.
(b) The line integral of a conservative vector field is the difference of the potential function between the end and the beginning of the curve. Thus

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\phi\left(\frac{3 \pi}{2}, \pi\right)-\phi\left(0, \frac{\pi}{2}\right) \\
& =[y \sin x-x \cos y]_{\left(0, \frac{\pi}{2}\right)}^{\left(\frac{3 \pi}{2}, \pi\right)} \\
& =\pi \sin \left(\frac{3 \pi}{2}\right)-\frac{3 \pi}{2} \cos (\pi)-\frac{\pi}{2} \sin (0)+0 \cos \left(\frac{\pi}{2}\right) \\
& =-\pi+\frac{3 \pi}{2}-0+0=\frac{1}{2}
\end{aligned}
$$

3. (a) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where

$$
\mathbf{F}(x, y, z)=2 x y \mathbf{i}+3 z \mathbf{j}+x y^{2} \mathbf{k}
$$

and C is the curve from $(1,0,0)$ to $(0,1, \pi)$ defined by $\mathbf{r}(t)=\cos (t) \mathbf{i}+$ $\sin (t) \mathbf{j}+2 t \mathbf{k}$.
(b) What is the value of the integral if we traverse the curve in the opposite direction?

Solution: (a) Here $\mathbf{r}^{\prime}(t)=-\sin (t) \mathbf{i}+\cos (t) \mathbf{j}+2 \mathbf{k}$, while $\mathbf{F}(\mathbf{r})=2 \cos (t) \sin (t) \mathbf{i}+$ $6 t \mathbf{j}+\cos (t) \sin ^{2}(t) \mathbf{k}$. Finally, $t=0$ at the beginning and $t=\frac{\pi}{2}$ at the end. Thus

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{\frac{\pi}{2}}\left\langle 2 \cos t \sin t \mathbf{i}+6 t \mathbf{j}+\cos t \sin ^{2} t \mathbf{k}\right\rangle \bullet\langle-\sin t \mathbf{i}+\cos t \mathbf{j}+2 \mathbf{k}\rangle d t \\
& =\int_{0}^{\frac{\pi}{2}}-2 \cos ^{2} t \sin t+6 t \cos t+2 \cos t \sin ^{2} t d t \\
& =\int_{0}^{\frac{\pi}{2}} 6 t \cos t d t
\end{aligned}
$$

Integration by parts gives

$$
\begin{aligned}
& =6 t \sin t]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} 6 \sin t d t \\
& =3 \pi-0-[-6 \cos t]_{0}^{\frac{\pi}{2}} \\
& =3 \pi-6
\end{aligned}
$$

(b) If we traverse the curve in the opposite direction, we get the negative of the line integral, i.e. $6-3 \pi$.
4. Find the area of the surface $z=x^{2}+y^{2}$, below the plane $z=4$.

Solution: If we think of the graph of a surface $z=f(x, y)$ as being parametrized by x and y, then a normal vector is

$$
\mathbf{N}=\mathbf{r}_{x} \times \mathbf{r}_{y}=-\frac{\partial z}{\partial x} \mathbf{i}-\frac{\partial z}{\partial y} \mathbf{j}+\mathbf{k}
$$

and

$$
d S=\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right|=\sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d x d y
$$

(Cf. Adams, Example 15.5.4, though don't worry about the geometry comments at the end.)

The surface area is $\iint_{R} d S$, where R is the region in the $x y$ plane that corresponds to the surface - the projection of the surface onto the $x y$ plane.

In this case, R is the disc $\left\{x^{2}+y^{2} \leq 4\right\}$, and the area is

$$
\iint_{R} \sqrt{4 x^{2}+4 y^{2}+1} d x d y
$$

This is easiest to evaluate in polar coordinates, where it becomes

$$
\int_{0}^{2 \pi} \int_{0}^{2} r \sqrt{1+4 r^{2}} d r d \theta
$$

which (after substituting for $1+4 r^{2}$) gives

$$
\left.2 \pi \cdot \frac{1}{8} \cdot \frac{2}{3}\left(1+4 r^{2}\right)^{\frac{3}{2}}\right]_{0}^{2}=\frac{\pi}{6}(17 \sqrt{17}-1) .
$$

